
39

High-Performance Complex Event Processing over Hierarchical Data∗

BARZAN MOZAFARI, Massachusetts Institute of Technology

KAI ZENG, University of California, Los Angeles

LORIS D’ANTONI, University of Pennsylvania

CARLO ZANIOLO, University of California, Los Angeles

While complex event processing (CEP) constitutes a considerable portion of the so called Big Data analyt-
ics, current CEP systems can only process data having a simple structure, and are otherwise limited in
their ability to efficiently support complex continuous queries on structured or semi-structured information.
However, XML-like streams represent a very popular form of data exchange, comprising large portions of so-
cial network and RSS feeds, financial feeds, configuration files, and similar applications requiring advanced
CEP queries. In this paper, we present the XSeq language and system that support CEP on XML streams,
via an extension of XPath that is both powerful and amenable to an efficient implementation. Specifically,
the XSeq language extends XPath with natural operators to express sequential and Kleene-* patterns over
XML streams, while remaining highly amenable to efficient execution. In fact, XSeq is designed to take full
advantage of the recently proposed Visibly Pushdown Automata (VPA), where higher expressive power can
be achieved without compromising the computationally attractive properties of finite state automata. Be-
sides the efficiency and expressivity benefits, the choice of VPA as the underlying model also enables XSeq
go beyond XML streams and be easily applicable to any data with both sequential and hierarchical struc-
tures, including JSON messages, RNA sequences, and software traces. Therefore, we illustrate the XSeq’s
power for CEP applications through examples from different domains and provide formal results on its
expressiveness and complexity. Finally, we present several optimization techniques for XSeq queries. Our
extensive experiments indicate that XSeq brings outstanding performance to CEP applications: two orders
of magnitude improvement is obtained over the same queries executed in general-purpose XML engines.

Categories and Subject Descriptors: H.2.3 [Information Systems]: DATABASE MANAGEMENT—Lan-

guages, Query languages

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Complex Event Processing, Big Data Analytics, XML, JSON, Visibly
Pushdown Automata

ACM Reference Format:

XXXX. ACM Trans. DB. Syst. 9, 4, Article 39 (March 2010), 39 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

∗ This manuscript is an extended version of a conference paper [Mozafari et al. 2012], now augmented
with new applications (Sections 3.6, 3.8), formal semantics (Section 5), and proofs and complexity results
(Sections 6.1, 6.2 and Appendix B).
This work was supported in part by NSF (Grant No. IIS 1118107).
Author’s addresses: B. Mozafari, Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT;
K. Zeng, Computer Science Department, UCLA; L. D’Antoni, Department of Computer and Information
Science, University of Pennsylvania. C. Zaniolo, Computer Science Department, UCLA;
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:2 B. Mozafari et al.

<result>{

for $t1 in doc("auction.xml")//Stock[@stock_symbol=‘DAGM’] return
<head>{$t1/@close}{

for $t4 in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’] where $t4/@close<=$t1/@close
and (every $t2 in for $x in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4 return $x satisfies $t2/@close<=$t1/@close and $t2/@close>=$t4/@close)

and (every $t2 in for $x in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’]
where $x<<$t4 return $x, $t3 in for $x in $t2/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4 return $x satisfies $t2/@close>=$t3/@close and $t3/@close>=$t4/@close)
return <bottom> {$t4/@close} </bottom>

} </head>
}</result>

Fig. 1. A query in XPath 2.0/XQuery for a sequence of ‘falling price’ in Nasdaq’s XML.

1. INTRODUCTION

XPath is an important query language on its own merits and also because it serves as
the kernel of other languages used in a wide range of applications, including XQuery,
several graph languages [Strömbäck and Schmidt 2009], and OXPath for web infor-
mation extraction [Furche et al. 2011]. Much work has also focused on the efficient
support for XPath in the diverse computational environments required by these appli-
cations. In particular, finite state automata (FSA) have proven to be very effective at
supporting XPath queries over XML streams [Koch 2009], and are also apt at providing
superior scalability through the right mix of determinism versus non-determinism. In
fact, numerous XML engines have been successfully built for efficient and continuous
processing of XML streams [Chen et al. 2006; Peng and Chawathe 2003; Olteanu et al.
2003; Barton and et. al. 2003; Josifovski et al. 2005; Florescu and et. al. 2003; Diao
et al. 2003]. All these systems support full or fragments of XPath or XQuery, and thus,
naturally inherit the pros and cons of these languages. The simplicity of XPath and the
generality of XQuery have made them very successful and effective for general-purpose
applications. However, these languages lack explicit constructs for expressing Kleene-*
and sequential patterns—a vital requirement in many CEP applications1. As a result,
while the existing engines remain very effective in general-purpose applications over
XML streams, their usability for CEP applications (that involve complex patterns) be-
comes highly limited as none of these engines provide any explicit sequencing/Kleene-*
constructs over XML.

To better illustrate the difficulty of expressing sequence queries in existing XML en-
gines (that mostly support fragments of XPath/ XQuery), in Fig. 1 we have expressed
a common query from stock analysis in XPath 2.0, where the user is interested in a
sequence of stocks with falling prices2. As shown in this example, due to the lack of ex-
plicit constructs for sequencing and Kleene-* patterns, the query in XPath/ XQuery is
very hard to write and understand for humans and is also difficult to optimize. We will
return to this query in Section 3, and show that it can be easily expressed using simple
sequential constructs (see Example 3.1 and Query 9). In fact, it is not a surprise that
the general-purpose XML engines perform two orders of magnitude slower on these
complex sequential queries than the same queries expressed and executed in XSeq
(the language and system presented in this paper), whereby explicit constructs for

1There are several definitions of CEP applications [Brenna et al. 2009; Luckham 2001; Wu et al. 2006],
but they commonly involve three requirements: (i) complex predicates (filtering, correlation), (ii) tempo-
ral/order/sequential patterns, and (iii) transforming the event(s) into more complex structures. In this paper
we mainly focus on (i) and (ii) while achieving (iii) represents a direction for future research, e.g. by embed-
ding our language (called XSeq) inside XSLT.
2In fact, in practice, stock queries tend to be much more complex, e.g. in a wedge pattern (www.investopedia.
com), the user seeks an arbitrary number of falling and rising phases of a stock.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:3

Kleene-* patterns and effective VPA-based optimizations allow for high-performance
execution of CEP queries.

These limitations of XPath are not new, as several extensions of XPath have been
previously proposed in the literature [ten Cate 2006; ten Cate and Marx 2007b; 2007a].
However, the efficient implementation of even these extensions (often referred to as
Regular XPath) remained an open research challenge, which the papers proposing said
extensions did not tackle (neither for stored data nor for data streams). In fact, the
following was declared to be an important open problem since 2006 [ten Cate 2006]:
“Efficient algorithms for computing the transitive closure of XPath path expressions”.

Fortunately, significant advances have been recently made in automata theory with
the introduction of Visibly Pushdown Automata [Alur and Madhusudan 2004; 2006].
VPAs strike a balance between expressiveness and tractability: unlike pushdown au-
tomata (PDA), VPAs have all the appealing properties of FSA (a.k.a. word automata).
For instance, VPAs enjoy higher expressiveness (than word automata) and more suc-
cinctness (than tree automata), while their decision complexity and closure properties
are analogous to word automata, e.g., VPAs are closed under union, intersection, com-
plementation, concatenation, and Kleene-*; their deterministic versions are as expres-
sive as their non-deterministic counterparts; and membership, emptiness, language
inclusion and equivalence are all decidable [Alur and Madhusudan 2004; 2006]. How-
ever unlike word automata, VPAs can model and query any well-nested data, such as
XML, JSON files, RNA sequences, and software traces [Alur and Madhusudan 2006].
What these seemingly diverse set of formats have in common is their dual-structures:
(i) they all have a sequential structures (e.g. there is a global order of the tags in a
JSON or XML file based on the order that they appear in the document), (ii) they also
have a hierarchical structure (when XML elements or JSON objects are enclosed in
one another), but (iii) this hierarchical structure is well-nested, e.g. the open tags in
the XML documents match with their corresponding close tags. Data with these prop-
erties can be formally modeled as Nested Words or Visibly Pushdown Words [Alur and
Madhusudan 2004; 2006]. (We have included a brief background on nested words and
VPAs in Appendix A.) Throughout this paper we refer to such formats as ‘XML-like’
data, but for the most part we focus on XML3.

Although these new types of automata can bring major benefits in terms of expres-
sive power, to the best of our knowledge, their optimization and efficient implemen-
tation in the context of XPath-based query languages have not been explored before.
Hence, in this paper, we introduce the XSeq language which achieves new levels of
expressive power supported by a very efficient implementation technology. XSeq ex-
tends XPath with powerful constructs that support (i) the specification of and search
for complex sequential patterns over XML-like structures, and (ii) efficient implemen-
tation using the Kleene-* optimization technology and streaming Visibly Pushdown
Automata (VPA).

Being able to compile complex pattern queries into equivalent VPAs has several
key benefits. First, it allows for expressing complex queries that are common in CEP
applications. Second, it allows for efficient stream processing algorithms. Finally, the
closeness of VPAs under union operation creates the same opportunities for CEP sys-
tems (through combining their corresponding VPAs) that the closeness of NFAs (non-
deterministic finite automata) created for publish-subscribe systems [Diao et al. 2003;
Vagena et al. 2007; Laptev and Zaniolo 2012], where simultaneous processing of mas-

3Using XSeq to query other XML-like data (e.g. JSON, RNA, software traces) is straightforward and only
involves introducing domain-specific interfaces on top of XSeq, e.g. see [Zeng et al. 2013] for a few examples
of such interfaces.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:4 B. Mozafari et al.

sive number of queries becomes possible through merging the corresponding automata
of the individual queries.

Contributions. In summary, we make the following contributions:

(1) The design of XSeq, a powerful and user-friendly query language for CEP over
XML streams or stored sequences.

(2) An efficient implementation for XSeq based on VPA-based query plans, and several
compile-time and run-time optimizations.

(3) Formal results on the expressiveness of XSeq, and the complexity of its query eval-
uation and query containment.

(4) An extensive empirical evaluation of XSeq system, using several well-known
benchmarks, datasets and engines.

(5) Our XSeq engine can also be seen as the first optimization and implementation for
several of the previously proposed languages that are subsumed in XSeq but were
never implemented (e.g. Regular XPath [ten Cate 2006], Regular XPath(W) [ten
Cate and Segoufin 2008] and Regular XPath≈ [ten Cate and Marx 2007b]).

Paper Organization. We present the main constructs of our language in Section 2
using simple examples. The generality and versatility of XSeq for expressing CEP
queries are illustrated in Section 3 where several well-known queries are discussed.
Our query execution and optimization techniques are presented in Section 4. In order
to study the expressiveness and complexity of our language, we first provide formal
semantics for XSeq in Section 5, which is followed by our formal results in Section 6,
including the translation of XSeq queries into VPAs, their MSO-completeness and their
query evaluation and query containment complexities. Our XSeq engine is empirically
evaluated in Section 7, which is followed by an overview of the related work in Sec-
tion 8. Finally, we conclude in Section 9. For completeness, we have also included a
brief background on VPAs in Appendix A.

2. XSEQ QUERY LANGUAGE

In this section, we briefly introduce the query language supported by our CEP system,
called XSeq. The simplified syntax of XSeq is given in Fig. 2 which suffices for the sake
of this presentation. Below we explain the semantics of XSeq via simple examples. We
defer the formal semantics to Section 5.

Inherited Constructs from Core XPath. The navigational fragments of XPath 1.0
and 2.0 are called, respectively, Core XPath 1.0 [ten Cate and Marx 2007b] and Core
XPath 2.0 [ten Cate and Marx 2007a]. The semantics of these common constructs are
similar to XPath (e.g., axes, attributes). Other syntactic constructs of XPath (e.g., the
following axis) can be easily expressed in terms of these main constructs (see [ten Cate
and Marx 2007a]). In XSeq there are two new axes to express the immediately follow-
ing 4 notion, namely first child and immediate following sibling, which are described
later on. Some of the axes in XSeq have shorthands:

4XSeq does not have analogous operators for immediately preceding since backward axes of XPath are rarely
used in practice.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:5

XSeqQuery ← [′return′ Output ′from′] Pattern
[′where′ Condition] [′partition by′ Pattern]

Output ← Operand [′,′ Output]
Pattern ← [′doc()′] PathExpr

PathExpr ← Step
| PathExprDefinition
| PathExpr PathExpr
| ′(′ PathExpr ′)′ ′∗′

| PathExpr ′union′ PathExpr
| PathExpr ′intersect′ PathExpr

PathExprDefinition ← ′(′ V ariable ′ :′ PathExpr ′)′

Step ← Axis NameTest Predicate *
Axis ← AxisSpecifier ′ ::′ | AbbreviatedAxisSpecifier

AxisSpecifier ← ′self ′ | ′child′ | ′parent′ | ′descendant′ | ′ancestor′

| ′attribute′ | ′following sibling′ | ′preceding sibling′

| ′first child′ | ′immediate following sibling′

AbbreviatedAxisSepcifier ← ′ ·′ | ′/′ | ′//′ | ′@′ | ′\′ | ′/\′

NameTest ← QName | ′ ∗′ | V ariable | KindTest
KindTest ← ′node()′ | ′text()′

Predicate ← ′[′ (Pattern | Condition) ′]′

Condition ← BoolExpr
Operand ← Constant | Alias PlainStep * (AttributeStep | TextStep)

| Aggregate ′(′ ArithmeticExpr ′)′

PlainStep ← Axis QName
AttributeStep ← (′attribute′ ′ ::′ | ′@′) QName

TextStep ← (′child′ ′ ::′ | ′/′) ′text()′

Aggregate ← ′max′ | ′min′ | ′count′ | ′sum′ | ′avg′

Alias ← SequenceAlias | PlainAlias
SequenceAlias ← (′prev′ | ′first′ | ′last′) ′(′ V ariable ′)′

PlainAlias ← V ariable

Fig. 2. XSeq Syntax (QName, Variable, BoolExpr, Constant, and ArithmeticExpr are defined in the text).

Axis Shorthand

self .
child /

descendant //
attribute @

following sibling λ (empty string, i.e. default axis)
first child /\

immediate following sibling \

Conditions. In XSeq, a Condition can be any predicate which is a boolean com-
bination of atomic formulas. An atomic formula is a binary operator applied to two
operands. A binary operator is one of =, 6=, <, >, ≤, ≥. An operand is any algebraic
combination (using +, -, etc.) and aggregates of string or numerical constants, and the
attributes or text contents of variable nodes.

Example 2.1 (A family tree.). Our XML document is a family tree where every
node has several attributes: Cname (for name), Bdate (for birthdate), Bplace (for the
city of birth) and each node can contain an arbitrary number of sub-entities Son and
Daughter. Under each node, the siblings are ordered by their Bdate.

In the following, we use this schema as our running example.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:6 B. Mozafari et al.

Example 2.2. Find the birthday of Mary’s sons.

QUERY 1.

//daughter[@Cname=‘Mary’] /son /@Bdate

Kleene-* and parentheses. Similar to Regular XPath [ten Cate 2006] and its di-
alects [ten Cate and Marx 2007b; ten Cate and Segoufin 2008], XSeq supports path
expressions such as /a(/b/c)∗/d, where a Kleene-* expression A∗ is defined as the in-
finite union · ∪ A ∪ (A/A) ∪ (A/A/A) ∪ · · ·

Example 2.3. Find those sons born in ‘New York’, who had a chain of male descen-
dants in which all the intermediary sons were born in ‘Los Angeles’ and the last one
was again born in ‘New York’. For all such chains, return the name of the last son.5

QUERY 2.

// son[@Bplace=‘NY’] (/son[@Bplace=‘LA’])* /son[@Bplace=‘NY’] /@Cname

The parentheses in ()∗ can be omitted when there is no ambiguity. Also, note the
difference between the semantics of (/son)∗ and //son: the latter only requires a son
in the last step rather than the entire path.

Syntactic Alternatives. In XSeq, the node selection conditions can be alternatively
moved to an optional where clause, in favor of readability. When a condition is moved
to the where clause, its step should be replaced with a variable (variables in XSeq start
with $). Also, similarly to XPath 2.0 and XQuery, the query output in XSeq can be
moved to an optional return clause. Query 3 below is an alternative way of writing
Query 2 in XSeq. Here, tag($X) returns the tag name of variable $X .

QUERY 3.

return $B@Cname
from //son[@Bplace=‘NY’] (/$A)* /$B[@Bplace=‘NY’]
where tag($A)=‘son’ and $A@Bplace=‘LA’ and tag($B)=‘son’

For clarity, in this paper we mainly use this alternative syntax.

Order Semantics, Aggregates. XSeq is a sequence query language. Therefore, unlike
XPath where the input and output are a set (or binary relation), in XSeq the XML
stream is viewed as a pre-order traversal of the XML tree. Thus, both the input and
the output of an XSeq query are a sequence. The XML nodes are ordered according to6

their relative position in the XML document.
As a result, besides the traditional aggregates (e.g., sum, max), XSeq also supports

sequential aggregates (SeqAggr in Fig. 2) which are only applied to variables under
a Kleene-* For instance, the path expression /son(/$X)∗, last($X) @name returns the
name of the last X in the (/$X)∗ sequence. Similarly, first($X) returns the first node
of the (/$X)∗ and prev($X) returns the node before the current node of the sequence.

5This is an example of a well-known class of XML queries which has been proven [ten Cate 2006] as not
expressible in Core XPath 1.0.
6When a WINDOW is defined over the XML stream, the input nodes can be re-ordered. For simplicity of the
discussion, we do not discuss re-ordering.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:7

Finally, $X @Bdate > prev($X) @Bdate ensures that the nodes that match (/$X)∗ are in
increasing order of their birth date.

Siblings. Since XSeq is designed for complex sequential queries, its default axis (i.e.
when no explicit axis is given) is the ‘following sibling’. The omission of the ‘follow-
ing sibling’ allows for concise expression of complex horizontal patterns.

Example 2.4. Find all the younger brothers of ‘Mary’.

QUERY 4.

return $S@Cname
from //$D[@Cname=‘Mary’] $S
where tag($D)=‘daughter’ and tag($S)=‘son’

Here, since no other axes appear between D and S, they are treated as siblings.

Immediately Following. This is the construct that gives XSeq a clear advantage
over all the previous extensions of XPath in terms of expressiveness, succinctness and
optimizability. We believe that one of the main shortcomings of the previous XML lan-
guages for CEP applications is their lack of explicit constructs for expressing the notion
of ‘immediately following’ (see Section 3). Thus, to overcome this, XSeq provides two
explicit axes, \ and /\, for immediately following semantics. For example, Y\X will re-
turn the immediately next sibling of node Y, while Y/\X will return the very first child
of node Y. Similarly to other constructs, these operators return an empty set if no such
node can be found, e.g., when we are at the last sibling or a node with no children.

Example 2.5. Find the first two elder siblings of ‘Mary’.

QUERY 5.

return $X@Cname, $Y@Cname
from //daughter[@Cname=‘Mary’] \$X \$Y

Example 2.6. Find the second child of ‘Mary’.

QUERY 6.

return $Y@Cname
from //daughter[@Cname=‘Mary’] /\$X \$Y

Partition By. Inspired by relational Data Stream Management Systems (DSMS),
XSeq supports a partitioning operator that is very essential for many CEP applica-
tions. Nodes can be partitioned by their key, so that different groups can be processed
in parallel as the XML stream arrives. Although this construct does not add to the
expressiveness, it provides a more concise syntax for complex queries and better op-
portunities for optimization. However, XSeq only allows partitioning by an attribute
field and requires that except this attribute, the rest of the path expression in the par-
titioning clause be a prefix of the path expression in the from clause. This constraint
is important for ensuring efficiency and also for avoiding queries with ill semantics.

Example 2.7. For each city, find the oldest male born there.

By knowing the cities that are present in our XML, we could write several queries, one
for each city e.g., min(//son[@Bplace =′ LA′] @Bdate). However, in streaming applica-
tions such information is generally not provided a priori. Moreover, instead of running

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:8 B. Mozafari et al.

several queries over the same stream, an explicit partition by clause allows for simul-
taneous handling of different key values and is much easier to optimize. For instance:

QUERY 7.

return $X @Bplace, min($X @Bdate)
from //$X
where tag($X) = ‘son’
partition by //son @Bplace

Path Complementation. XSeq does not provide explicit constructs for path com-
plementation (e.g., except in XPath 2.0). This restriction does not reduce XSeq’s ex-
pressivity, as it has been shown that path complementation can be expressed using
Kleene-* and path intersection [Cate and Lutz 2009]. The reason behind this restric-
tion in XSeq is that, by forcing the programmer to simulate the negation with other
constructs, the resulting query is often more amenable to optimization. For instance,
the query of Example 2.3 could be expressed in XPath 2.0 using their except operator
as:

//son[@Bplace=‘NY’]//son[@Bplace=‘NY’]@Cname
except
//son[@Bplace=‘NY’]//son[@Bplace != ‘LA’]//son[@Bplace=‘NY’]@Cname

However, as shown in Query 2, this query can be expressed in XSeq without using the
negation.

Path Variables. In Query 3, we showed how variables in XSeq could replace the
NameTest of a Step. Such variables are called step variables. In practice, and in fact in
all the real world examples of Section 3, we hardly need any feature beyond these step
variables. However, for more expressive power7, XSeq also supports the so-called path
variables that can replace path expressions, as shown in the PathExprDefinition rule
of Fig. 2.

Example 2.8. Find daughter followed by a sequence of siblings with alternating
genders, namely daughter, son, daughter, son, and so on.

QUERY 8.

return first($Z) $X @Cname
from // ($Z: $X $Y $Z)
where tag($X) = ‘daughter’ and tag($Y) = ‘son’

This query defines the path variable $Z as $X $Y $Z which means $Z is recursively
defined as $X $Y followed by itself. In this particular example, ($Z : $X $Y $Z) is
equivalent to ($Z : $X $Y )∗, but in general not all recessive path variables can be
replaced with Kleene-*8. Also, note that path variables do not have to be recursive, e.g.
$Z in ($Z : $X $Y )∗ is a valid path variable too.

The same step variable can appear multiple times in the from clause. However, for
path variables we differentiate between their definition and their reference. XSeq re-
quires that path variables be defined only once in the from clause. For instance,

return first($Z) $X @Cname
from // ($Z: $X $Y $Z) $Z
where tag($X) = ‘daughter’ and tag($Y) = ‘son’

is a valid query, but the following query is not allowed:

7This particular feature of XSeq is interesting from a theoretical point of view, as it makes the language
Monadic Second Order (MSO)-complete, thus, subsuming previous extensions of XPath.
8Recursive path variables are a more powerful form of recursion than than Kleene-*. See Section 6.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:9

return first($Z) $X @Cname
from // ($Z: $X $Y $Z) ($Z: $X)
where tag($X) = ‘daughter’ and tag($Y) = ‘son’

as it redefines the path variable $Z.
Moreover, there is also a restriction on how path variables can be referenced in the

from clause 9. Before explaining this restriction, we first need to define the concepts of
yield and nend for a path variable.

Definition 2.9. For a path variable $X defined as ($X : P ), where P is a path
expression, we define the nend($X) as all the path variables in P which do not
appear at the end of a production for P . We also recursively define yield($X) =⋃

$Y ∈P yield($Y ) ∪ {$Y } where $Y iterates over all the path variables appearing in
P .

For instance, for ($X : $X $Y $X)($Y : /son/$Z) as the from clause, nend($X) =
{$X, $Y } and yield($X) = {$X, $Y, $Z}. Now, we are ready to formally define the re-
striction on referencing path variables: Path variables in XSeq can appear multiple
times in the from clause, as long as the following rule is not violated:

RULE 1. For every path variable defined as ($X : P ), $X 6∈ yield($Y ) for ∀$Y ∈
nend($X).

Intuitively, this rule disallows circular definitions of path variables. The reason be-
hind this restriction is that allowing arbitrary references to a path variable can make
the language non-regular, and hence not amenable to efficient implementation10.

Other Constructs in XSeq. union and intersect have the same semantics as in
XPath. If the user desires an XML output, he can embed the XSeq query in an XQuery
or XSLT expression. Formatting the output is out of the scope of this paper and makes
an interesting future direction of research. Instead, in this paper, we only focus on the
query expression and its efficient execution for CEP applications.

In the next section, we will use these basic constructs to express more advanced
queries from a wide range of CEP applications.

3. ADVANCED QUERIES FROM COMPLEX EVENT PROCESSING

In this section we present more complex examples from several domains and show that
XSeq can easily express such queries.

3.1. Stock Analysis

Consider an XML stream of stock quotes as defined in Fig. 3. Let us start with the
following example.

Example 3.1 (Falling pattern). Find those stocks whose prices are decreasing.

QUERY 9 (FALLING PATTERN IN XSEQ).

return last($X)@price
from /stocks /$Z (\$X)*
where tag($Z) = ‘transaction’ and tag($X) = ‘transaction’
and $X@price < prev($X)@price

partition by /stocks /transaction@company

9Later in Section 6.1, we define the restriction rule more formally
10For example, allowing ($X : a $X $Y )($Y : b) would represent the pattern anbn which is not MSO
expressible.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:10 B. Mozafari et al.

<! DOCTYPE stocks [
<! ELEMENT stocks (transaction*)>
<! ATTLIST transaction company CDATA #REQUIRED>
<! ATTLIST transaction price CDATA #REQUIRED>
<! ATTLIST transaction buyer IDREF #REQUIRED>
<! ATTLIST transaction date CDATA #REQUIRED>
]>

Fig. 3. The DTD for the stream of Nasdaq transactions.

This is in fact the same query as the one we had expressed in XPath 2.0 in Fig. 1.
Comparing the convoluted query of Fig. 1 with Query 9 clearly illustrates the impor-
tance of having explicit constructs for sequential and Kleene-* constructs in enabling
CEP applications. This clarity and succinctness at the language level provide more op-
portunities for optimization which eventually translate to more efficiency, as shown in
Sections 4 and sec:experiments, respectively. Next, let us consider the ‘V’-shape pat-
tern which is a well-known query in stock analysis.

Example 3.2 (‘V’-shape pattern). Find those stocks whose prices have formed a
‘V’-shape. That is, the price has been going down to a local minimum, then rising up to
a local maximum which was higher than the starting price.

The ‘V’-shape query only exemplifies many important queries from stock analysis 11

that are provably impossible to express in Core XPath 1.0 and Regular XPath, simply
both of these languages lack the notion of ‘immediately following sibling’ in their con-
structs. XPath 2.0, however, can express these queries through the use of its for and
quantified variables: using these constructs, XPath 2.0 can ‘simulate’ the concept of
‘immediately following sibling’ in XPath 2.0 by double negation, i.e. ensuring that ‘for
each pair of nodes, there is nothing in between’. But this approach leads to very con-
voluted XPath expressions which are extremely hard to write/understand and almost
impossible to optimize (See Fig. 1 and Section 7).

On the other hand, XSeq can express this queries with its simple constructs that can
be easily translated and optimized as VPA:

QUERY 10 (‘V’-PATTERN IN XSEQ).

return last($Y)@price
from /stocks /$Z (\$X)* (\$Y)*
where tag($Z) = ‘transaction’
and tag($X) = ‘transaction’ and tag($Y) = ‘transaction’
and $X@price < prev($X)@price
and $Y@price > prev($Y)@price

partition by /stocks /transaction@company

A more interesting pattern would be the falling wedge pattern, which shows the
power of sequence aggregates in XSeq language.

Example 3.3 (Falling wedge pattern). Find those stocks whose price fluctuates
as a series of ‘V’-shape patterns, where in each ‘V’ the range of the fluctuation becomes
smaller. Fig. 4(b) shows a falling wedge pattern.

QUERY 11 (FALLING WEDGE PATTERN IN XSEQ).

return $R @price, last($Y) @price

11http://www.chartpattern.com/

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:11

from /stocks /$R ((\$S)* \$X (\$T)* \$Y)*
where tag($R) = ‘transaction’ and tag($S) = ‘transaction’
and tag($X) = ‘transaction’ and tag($T) = ‘transaction’
and tag($Y) = ‘transaction’
and $R @price > first($S) @price
and prev($S) @price > $S @price
and last($S) @price > $X @price
and $X@price < first($T) @price
and prev($T) @price < $T @price
and last($T) @price < $Y @price
and prev($X) @price < $X @price
and prev($Y) @price > $Y @price

partition by /stocks /transaction @company

3.2. Social Networks

Twitter provides an API12 to automatically receive the stream of new tweets in sev-
eral formats, including XML. Assume the tweets are ordered according to their date
timestamp:

<! DOCTYPE twitter [
<! ELEMENT twitter ((tweet)*)>

<! ELEMENT tweet (message)>
<! ELEMENT message (#PCDATA)>

<! ATTLIST tweet tweetid CDATA #REQUIRED>
<! ATTLIST tweet userid CDATA #REQUIRED>
<! ATTLIST tweet date CDATA #REQUIRED> ]>

Example 3.4 (Detecting active users). In a stream of tweets, report users who have
been active over a month. A user is active if he posts at least a tweet every two days.

This query, if not impossible, would be very difficult to express in XPath 2.0 or Regular
XPath. The main reason is that, again due to their lack of ‘immediate following’, they
cannot easily express the concept of “adjacen” tweets.

QUERY 12 (DETECTING ACTIVE USERS IN XSEQ).

return first($T) @userid
from /twitter /$Z (\$T)*
where tag($Z) = ‘tweet’ and tag($T) = ‘tweet’
and $T@date-prev($T)@date < 2
and last($T)@date-first($T)@date > 30

partition by /twitter /tweet @userid

3.3. Inventory Management

RFID has become a popular technology to track inventory as it arrives and leaves
retail stores. Below is a sample schema of events, where events are ordered by their
timestamp:

<! DOCTYPE events [

<! ELEMENT events (event*)>
<! ELEMENT event (message)>
<! ELEMENT message (#PCDATA)>

<! ATTLIST event ts CDATA #REQUIRED>
<! ATTLIST event itemid CDATA #REQUIRED>

<! ATTLIST event eventtype CDATA #REQUIRED> ]>

Example 3.5 (Detecting Item Theft). Detect when an item is removed from the shelf
and then removed from the store without being paid for at a register.

12http://dev.twitter.com/

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:12 B. Mozafari et al.

QUERY 13 (DETECTING ITEM THEFT IN XSEQ).

return $T@itemid
from /events /$T \$W* \$X
where tag($T) = ‘event’ and tag($W) = ‘event’ and tag($X) = ‘transaction’
and $T@eventtype = ‘removed from shelf’
and $X@eventtype = ‘removed from store’
and $W@eventtype != ‘paid at register’

partition by /events/event@itemid

3.4. Directory Search

Consider the following first-order binary relation which is familiar from temporal
logic [ten Cate and Marx 2007b]:
φ(x, y) = descendant(x, y) ∧ q(y)∧

∀z(descendant(x, z) ∧ descendant(z, y)→ p(z))
For instance, for a directory structure that is represented as XML, by defining q

and p predicates as q(y): ‘y is a file’ and p(z): ‘z is a non-hidden folder’, the φ relation
becomes equivalent to the following query:

Example 3.6. Retrieve all reachable files from the current folder by repeatedly se-
lecting non-hidden subfolders.

According to the results from [ten Cate and Marx 2007b], such queries are not ex-
pressible in XPath 1.0. This query, however, is expressible in XPath 2.0 but not very
efficiently. E.g.,
//file except //folder[@hidden=‘true’]//file

Such queries can be expressed much more elegantly in XSeq (and also in Regular
XPath):

QUERY 14 (φ QUERY IN XSEQ).

(/folder[@hidden = ‘false’])* /file

3.5. Genetics

Haemophilia is one of the most common recessive X-chromosome disorders. In genetic
testing and counseling, if the fetus has inherited the gene from an affected grandparent
the risk to the fetus is 50% [Alexander et al. 2000]. Therefore, the inheritance risk for a
person can be estimated by tracing the history of haemophilia among its even-distance
ancestors, i.e. its grandparents, its grand-parents’ grand-parents, and so on.

Example 3.7. Given an ancestry XML which contains the history of haemophilia
in the family, identify all family members who are at even-distance from an affected
member, and hence, at risk.

This query cannot be easily expressed without Kleene-* [Cate and Lutz 2009], but is
expressible in XSeq:

QUERY 15 (DESCENDANTS OF EVEN-DISTANCE FROM A NODE).

return $Z @Cname
from //$X[@haemophilia = ‘true’] (/$Y /$Z)*

Queries 14 and 15 are not expressible in XPath 1.0, are expressible in XPath 2.0 but
not efficiently, and are easily expressible in Regular XPath and XSeq.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:13

(a) (b)

Fig. 4. (a) The β-meander motif (b) The falling wedge pattern

3.6. Protein, RNA and DNA Databases

The world-wide community of life scientists has access to a large number of public
bioinformatics databases and tools. As more and more of the resources offer program-
matic web-service interface, XML becomes a widely-used standard data exchange for-
mat for basic bioinformatics data. Many public bioinformatics databases provide data
in XML format.

Proteins, RNA and DNA are sequences of linear structures, but they are usually
with complex secondary or even higher-order structures which play important roles
in their functionality. Searching complex patterns in these rich-structured sequences
are of great importance in the study of genomics, pharmacy and so on. XSeq provides
a powerful declarative query language for access bioinformatics databases, which en-
ables complex pattern searching.

For instance, the structural motifs are important supersecondary structures in pro-
teins, which have close relationships with the biological functions of the protein se-
quences. These motifs are of a large variety of structural patterns, usually very com-
plex, e.g., the β-meander motif is composed of two or more consecutive antiparallel
β-strands linked together, as depicted in Fig. 4(a)13, while each β-strand is typically 3
to 10 amino acid. Consider now protein data with a simplified schema as below. Exam-
ple 16 uses XSeq to detect such motifs.

<!DOCTYPE uniprot [

<!ELEMENT uniprot (protein)*>
<!ELEMENT protein (fullName, feature+)>

<!ELEMENT fullName (#PCDATA)>
<!ATTLIST feature type CDATA #REQUIRED> ]>

QUERY 16 (DETECTING β-MEANDER MOTIFS).

return $N/text()
from //protein[$N] /$F \$G (\$H)*
where tag($N) = ‘fullName’
and tag($F) = ‘feature’ and $F@type = ‘beta-strand’
and tag($G) = ‘feature’ and $G@type = ‘beta-strand’
and tag($H) = ‘feature’ and $H@type = ‘beta-strand’

13http://en.wikipedia.org/wiki/Beta sheet

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:14 B. Mozafari et al.

3.7. Temporal Queries

Expressing temporal queries represents a long-standing research interest. A number
of language extentions and ad-hoc solutions have been proposed. Traditional temporal
databases use a state-oriented representation, where tuples of a database are time-
stamped with their maximal period of validity. This state-based representation re-
quires temporal coalescing and/or temporal joins even for basic query operations (e.g.
projection), and are thus prone to inefficient execution. Some recent research work has
proposed using XML-based event-oriented representation for transaction-time tempo-
ral database, where value updates in database history are recorded as events [Ama-
gasa et al. 2000; Wang et al. 2008; Zaniolo 2009]. For example, below is the DTD of
a temporal employee XML, where each employee has a sequence of salary and dept
elements time-stamped by the tstart, tend attributes, representing the update events
ordered by their start time in the database’s evolution history.

<!DOCTYPE employees [
<!ELEMENT employees (employee*)>

<!ELEMENT employee (name (salary | dept)+)>
<!ATTLIST employee id CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>

<!ELEMENT dept (#PCDATA)>
<!ATTLIST salary tstart CDATA #REQUIRED>
<!ATTLIST salary tend CDATA #IMPLIED>

<!ATTLIST dept tstart CDATA #REQUIRED>
<!ATTLIST dept tend CDATA #IMPLIED> ]>

XSeq is a powerful event-oriented temporal language, which can easily express ba-
sic temporal operations (e.g., temporal joins and temporal coalescing), as well as very
complex temporal sequence patterns. This can be illustrated by the following exam-
ples.

First, let us consider the well-known RISING query which is a famous temporal
aggregate introduced by TSQL2 [Snodgrass 2009].

Example 3.8 (RISING). What is the maximum time range during which an em-
ployee’s salary is rising?

QUERY 17.

return max(last($X) @tend - first($X) @tstart)
from // $Z* (\$X)*
where tag($X) = ‘employee’
and $X/salary/text() > prev($X)/salary/text()
and $X@tstart <= prev($X)@tend

partition by //employee @id

Example 3.9. Find employees who have risen quickly without changing depart-
ment. More precisely, we want to find employees who

(1) once hired (with some salary and into some department),
(2) have gone through one or more salary adjustments, followed by
(3) a transfer to another department,
(4) for a final salary that is 40% above the initial one.

This complex pattern can be expressed succinctly by Query 18.

QUERY 18.

return $X
from //employee[@$X] /$A \$B \$C (\$D)* \$E
where tag($A) = ‘salary’ and tag($B) = ‘dept’

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:15

and tag($C) = ‘salary’ and tag($D) = ‘salary’
and tag($E) = ‘dept’ and tag($X) = ‘id’
and $E/text() <> $B/text()
and last($D)/text() > 1.4 * $A/text()

3.8. Software Trace Analysis

Modern programming languages and software frameworks offer ample support for de-
bugging and monitoring applications. For example, in the .NET framework, the Sys-
tem.Diagnostics namespace contains flexible classes which can be easily incorporated
into applications to output runtime debug/trace information as XML files. The follow-
ing XML snippet shows a software trace of a function fibonacci that recursively called
itself but in the end threw out an exception.

<main>
...
<fibonacci @input = ‘500’>

<fibonacci @input = ‘499’>
...
<exception @msg = ‘overfolow’ />

</fibonacci>
</fibanacci>
...

</main>

Searching and analyzing the patterns in software traces could help debugging. For
example, we can easily identify the input to the last iteration of the function fibonacci
and the depth of the recursive calls by

QUERY 19.

return last($F) @input, count($F)
from //$X (/$F)* /$E
where tag($X) != ‘fibonacci’
and tag($F) = ‘fibonacci’
and tag($E) = ‘exception’

4. XSEQ OPTIMIZATION

The design and choice of operators in XSeq is heavily influenced by whether they can be
efficiently evaluated or not. Our criterion for efficiency of an XSeq operator is whether
it can be mapped to a Visibly Pushdown Automaton (VPA). The rationale behind choos-
ing VPA as the underlying query execution model is two-fold. First, XSeq is mainly
designed for complex patterns and patterns can be intuitively described as transitions
in an automaton: fortunately, VPAs are expressive enough to capture all the complex
patterns that can be expressed in XSeq. Secondly, VPAs retain many attractive compu-
tational properties of finite state automata on words [Alur and Madhusudan 2004]. In
fact, by translation into VPAs, we can exploit several existing algorithms for streaming
evaluation [Madhusudan and Viswanathan 2009] and optimization of VPAs [Mozafari
et al. 2010a]. For unfamiliar readers, we have provided a brief background on VPAs in
Appendix A.

In Section 4.1, we provide a high-level description of our algorithm for translating
the most commonly used operators of XSeq (other operators are covered in Section 6)
into equivalent VPAs which can faithfully capture the same pattern in the input14.
Then, in Sections 4.2 and 4.3, we present several static (compile-time) and run-time

14Informally, we say that an XSeq query and a VPA are equivalent when every portion of the input XML
that produces an output result in the former will be also accepted by the latter and vice versa.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:16 B. Mozafari et al.

optimizations of VPAs in our XSeq implementation. In Section 7, we study the effec-
tiveness of these optimizations in practice.

4.1. Efficient Query Plans via VPA

In this section, we describe an inductive algorithm to translate the most commonly
used features of XSeq into efficient and equivalent VPAs. This algorithm can han-
dle all forward axes, Kleene-*, and step variables (similar fragments to those studied
in [Gauwin et al. 2011]).

Later, in Section 6, we also provide a general algorithm for translating any arbitrary
XSeq query Q (including path variables and backward axes) into a VPA (which in
general, can be larger and hence, less efficient) accepting all the input trees on which
Q returns a non-empty set of results. However, in practice, most of commonly used
queries (including all of those of Section 3) can be efficiently handled by the algorithm
presented below.

Note that although the theoretical notion of VPAs only allows for transitions based
on fixed symbols of an alphabet, for efficiency reasons, in our real implementation, we
allow the states of the VPA to store values and also to transition when a predicate
evaluates to true15.

As described above, compiling XSeq queries into efficient query plans starts by con-
structing an equivalent VPA for the given query. We construct this VPA by an iterative
bottom-up process where we start from a single-state (trivial) VPA and at each forward
Step of the XSeq query, we compose the original VPA with a new VPA that is equiva-
lent with the current Step. Next, we show how different forward axes can be mapped
into equivalent VPAs. Lastly, we show some of the other constructs of the XSeq query
that can be similarly handled.

In the following, whenever connecting the accepting state(s) of a VPA to the starting
state(s) of the previous VPA, since VPAs are closed under concatenation, the resulting
automaton is still a valid VPA.

Handling /: The /X axis is equivalent to a VPA with two states E and O where E is the
starting state at which we invoke the stack on open and closed tags accordingly (see
Appendix A for the rules regarding stack manipulation in a VPA), and transition to
the same state on all input symbols as long as the consumed input in E is well-nested.
Upon seeing the appropriate open tag (e.g., 〈X〉) we non-deterministically transition to
our accepting state O.

Handling @: In the presence of the attribute specifier, @, we add a new state A as the
new accepting state which will be transitioned to from our previous accepting state
upon seeing any attribute. We remain in state A as long as the input is another at-
tribute, i.e. to account for multiple attributes of the same open tag.

Fig. 5(a) demonstrates the VPA for /son@Bdate. Fig. 6 shows the intuitive correspon-
dence of this VPA with the navigation of the XML document, where:

— E matches zero or more (well-nested) subtrees in the pre-order traversal of the XML
tree,

— O matches the open tag for son, i.e. 〈son〉,
— A matches the attribute list of 〈son〉, namely O.

To see the correspondence between this VPA and the XSeq query, note that to find all
the direct sons of a daughter, we navigate through the pre-order traversal of the sub-
tree under each daughter node, then non-deterministically skip an arbitrary number

15However, in the formal analysis of XSeq’s expressiveness in Section 6, we will use the theoretical notion
of a VPA, i.e. without any storage besides the actual states and without any predicates.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:17

(a)

(b)
Fig. 5. VPAs for (a) /son@Bdate and (b) /daughter son.

Fig. 6. Visual correspondence of VPA states and XSeq axes.

of her children (i.e., E∗) until visiting one of her children who is a son (i.e., O), and
then finally visit all the tokens that correspond to his son’s attributes, i.e. A∗. The non-
determinism assures that we eventually visit all the sons under each daughter.

Handling ()*: Kleene-* expressions in XSeq, such as (/son)∗, are handled by first con-
structing a VPA for the part inside the parentheses, say V1, then adding an ǫ-transition
from the accepting state of V1 back to its starting state. Since VPAs are closed under
Kleene-*, the resulting automaton will still be a VPA.

Handling //: The // axis can also be easily defined as a Kleene-* of the / operator.
For instance, the //daughter construct is equivalent to (/X) ∗ /daughter, where X is a
wild card, i.e. matches any open tag. Fig. 6 shows the correspondence between the VPA
states for // and the familiar traversal of the XML document.

Handling siblings: Let V1 be the VPA that recognizes the query up to node D. The
VPA for recognizing the sibling of D, say node S, is constructed by adding four new
states (E1, C, E2 and O) to V1, where:

— We transition from the accepting state(s) of V1 to E1. E1 invokes the stack on open
and closed tags accordingly, and transitions to itself on all input symbols as long as
the consumed input in E1 is well-nested.

— Upon seeing a close tag of D, we non-deterministically transition from E1 to C.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:18 B. Mozafari et al.

— We transition from C to E2 upon any input. Similar to E1, E2 invokes the stack on
open and closed tags accordingly, and transitions to itself on all input symbols as
long as the consumed input in E2 is well-nested.

— Upon seeing an open tag for the sibling, i.e. 〈S〉, we non-deterministically transition
from E2 to state O which is marked as the accepting state of the new VPA.

Fig. 5(b) shows the VPA for query “/daughter son”. The intuition behind this
construction is that E1 skips all possible subtrees of the last daughter non-
deterministically, while E2 non-deterministically skips all other siblings of the current
daughter until it reaches its sibling of type son.

Handling \ : The construct \X is handled according to the last axis that has appeared
before it. Let V1 be the VPA for the XSeq query up to \X. When the previous axis is
vertical (e.g. / or //), then we only need to add one new state to the V1, say O, where
from all the accepting states of V1 we transition to state O upon seeing any open tag of
X. The new accepting state will be O.

When the axis before \X is horizontal (e.g. siblings), we add three new states to V1,
say E, C and O, where:

— We transition from the accepting state(s) of V1 to E. At E, we invoke the stack upon
open and closed tags accordingly, and transition to E on all input symbols as long as
the consumed input in E is well-nested.

— We non-deterministically transition from E to C upon seeing a close tag of the last
(horizontal) axis.

— We transition from C to O upon an open tag for X and fail otherwise. O will be the
new accepting state of the VPA.

Handling predicates. In general, arbitrary predicates cannot be handled using the
inductive construction described in this section, e.g., when a predicate refers to nodes
other than the one being processed. Thus, our construction in this section assumes that
the predicates only refer to attributes of the current node. (In Section 6 we consider
arbitrary predicates.)

In our real implementation of XSeq, we simply use a few variables (a.k.a. registers)
at each state, in order to remember the latest values of the operands in the predi-
cate(s) that need to be evaluated at that state. However, in our complexity analysis in
Section 6, we use the abstract form of a VPA, namely where a state is duplicated as
many as there are unique values for its operands.

Handling partition by. Since the pattern in the ‘partition by’ clause is the prefix
of the pattern in the ‘from’ clause, the partition by clause can be simply treated as a
new predicate on the attribute which is partitioned by. For example, when translating
Query 17 into a VPA, assume that the ‘partition by’ attribute (i.e., ID) has k different
values, i.e. v1, · · · , vk. Then, we replicate the current VPA k times, each corresponding
to a different value of the ID attribute. Once a value of ID is read, say vi, we transition
to the starting state of the VPA that corresponds to vi and thereon, we simply check
that at every state of that sub-automata the current value of the ID attribute is equal
to vi, i.e. otherwise we reject that run of the automata.

Handling other constructs Union, intersection, and, node tests can all be im-
plemented with their corresponding operations on the intermediary VPAs, as VPAs
are closed under union, intersection and complementation. The translations are thus
straightforward (omitted here for space constraints).

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:19

Fig. 7. //book/year/text()

4.2. Static VPA Optimization

Cutting the inferrable prefix. When the schema (e.g. DTD ) is available, we can
always remove the longest prefix of the pattern as long as (i) the prefix has not been
referenced in the return or the where clause, and (ii) the omitted prefix can be always
inferred for the remaining suffix. For example, consider the following XSeq query, de-
fined over the SigmodRecord dataset16:
//issue/articles/authors/author[text()=‘Alan Turing’]
This XSeq query generates a VPA with many states, i.e. 3 states for every step. How-
ever, based on the DTD, we infer that author nodes always have the same prefix, i.e.
issue/articles/authors/. Thus, we remove the part of the VPA that corresponds to
this common prefix. Due to the sequential nature of VPAs, such simplifications can
greatly improve the efficiency by reducing a global pattern search to a more local one.

Reducing non-determinism from the transition table. Our algorithm for trans-
lating XSeq queries produces VPAs that are typically non-deterministic. Reducing the
degree of non-determinism always improves the execution efficiency by avoiding many
unnecessary backtracks. In general, full determinization of a VPA is an expensive pro-

cess, which can increase the number of states from O(n) to O(2n
2

) [Alur and Madhusu-
dan 2004].

However, there are special cases that the degree of non-determinism can be reduced
without incurring an exponential cost in memory. Since self-loops in the transition
table are one of the main sources of non-determinism, whenever self-loops can only
occur a fixed number of times, the XSeq’s compile-time optimizer removes such edges
from the generated VPA by duplicating their corresponding states accordingly. For
instance, consider the XSeq query //book/year/text() and its corresponding VPA in
Fig. 7. If we know that book nodes only contain two subelements, say title followed
by year, the optimizer will replace E1 with 3 new states (without any self-loops) to
explicitly skip the title’s open, text and closed tags. The latter expression (E1∧3) is
executed more efficiently as it will be deterministic.

Reducing non-determinism from the states. In order to skip all the intermediate
subelements, the automatically generated VPAs contain several states with incoming
and outgoing ǫ-transitions. In the presence of the XML schema, many of such states be-
come unnecessary and can be safely removed before evaluating the VPA on the input.
We have several rules for such safe omissions. Here, we only provide one example.

Let us once again consider the query and the VPA of Fig. 7 as our example. If ac-
cording to the schema, we know that the year nodes cannot contain any subelements,

16http://www.cs.washington.edu/research/xmldatasets/

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:20 B. Mozafari et al.

the optimizer will remove E2 entirely. Also, if a node, say year, does not have any at-
tributes, the optimizer will remove its corresponding state, here Ay.

4.3. Run-time VPA Optimization

In the previous sections, we demonstrated how XSeq queries can be translated into
equivalent VPAs and presented several techniques for reducing the degree of non-
determinism in our VPAs. One of the main advantages of using VPAs as the underlying
execution model is that we can take advantage of the rich literature on efficient eval-
uation of VPAs. In particular we use the one-pass evaluation of the VPAs as described
in [Madhusudan and Viswanathan 2009] and use the pattern matching optimization
of VPAs as described in [Mozafari et al. 2010a].

In a straightforward evaluation of a VPA over a data stream, one would consider the
prefix starting from every element of the stream as a new input to the VPA. In other
words, upon acceptance or rejection of every input, the immediate next starting posi-
tion would be considered. However, for word automata, it is well-known that this naive
backtracking strategy can be easily avoided by applying pattern matching techniques
such as the KMP [Knuth et al. 1977] algorithm. Recently, a similar pattern match-
ing technique was developed for VPAs, known as VPSearch [Mozafari et al. 2010a].
Similar to word automata, VPSearch avoids many unnecessary backtracks and there-
fore, reduces the number of VPA evaluations. We have implemented VPSearch and its
run-time caching techniques in our Java implementation of XSeq. Further details on
streaming evaluation of VPAs and the VPSearch algorithm can be found in [Madhusu-
dan and Viswanathan 2009] and [Mozafari et al. 2010a], respectively. Because of the
excellent VPA execution performance achieved by K*SQL [Mozafari et al. 2010a], we
have used the same run-time engine for XSeq queries once they are compiled into a
VPA (see Section 7).

In the next two sections, we define the formal semantics of XSeq and present our
results on its expressiveness and complexity.

5. FORMAL SEMANTICS OF XSEQ

While in the previous section we informally illustrated the semantics of different XSeq
operators through intuitive examples, in this section we provide the formal semantics
of XSeq which once restricted to its navigational features, will pave the way for a
rigorous analysis of the language in Section 6. We first define an XML tree.

Definition 5.1 (XML Tree). An XML tree Tr is an unranked ordered tree Tr =
(V, L, ↓,→) where V is a set of nodes, L : V → Σ is a labeling of the nodes to symbols of
a finite alphabet Σ, and R↓ and R→ are respectively the parent-child and immediately
following sibling relationships among the nodes. For leaf nodes v, we define R↓(v) = ⊥.
Also, for the rightmost child v we define R→(v) = ⊥. We refer to the root node of Tr as
root(Tr).

Using R↓ and R→, we can similarly define Rax where ax is any of the Axes17 in
Fig. 2. Next, we define a query, where for simplicity, we ignore the output clause and
only consider the ‘decision’ version of the query, namely query can only return a ‘true’
if it finds a match, and otherwise returns nothing.

Definition 5.2 (Query). We represent an XSeq query of form “return true from doc()
P where C” as Q = (P,C) where P is a PathExpr and C is a Condition. When C is
absent, we use “true” instead, i.e. Q = (P, true).

17For clarity, in this section, we use capitalized words when referring to any of the production rules of Fig. 2.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:21

Definition 5.3 (Normalized Query). A query Q = (P,C) is normalized if all Predi-
cates in P are patterns.

Note that we can always normalize any query Q = (P,C) by applying the following
steps:

(1) For each Condition Predicate cp in P , rewrite cp into disjunctive normal form cp1 ∨
cp2 ∨ · · · ∨ cpk. Then rewrite Q into Q′ = (P1 ∪ P2 ∪ · · · , Pk, C) such that each Pi

only contains cpi. Repeat this process until all Condition Predicates in Pi are in
conjunctive form. Let the resulting query be Q0 = (P 0, C0).

(2) For each conjunctive Condition Predicate pred in Step s of P 0, extract all of its path
expressions, say p1, p2, ..., pj .

(3) By renaming the last Step in pi with a new Step variable vi, obtain p′i. Add a
Predicate [p′i] to Step s.

(4) Remove pred from s. Express pred using {vi}, say pred′. Add pred′ ∧
{constraints on {vi}} to C0.

(5) If pi contains Kleene-* and the last Step can be empty (e.g. due to a Kleene-*),
rewrite pi into the union of a set of path expression, whose last Step cannot be
empty.

Thus, in the rest of this discussion, we assume all the queries are in their normalized
form.

Example 5.4. The normalized form of the query doc()/a[c/d > e/f ]/b is as follows:

doc()/a[c/$X][e/$Y]/b
where tag($X) = ’d’ and tag($Y) = ’f’
and $X > $Y

Definition 5.5. For a Pattern p, we define χ(p) = {all the NameTest’s that appear in
p}.

When the same NameTest appears multiple times, we keep all occurrences in χ, e.g.
by adding an index.

Example 5.6. For p = doc()/a/b/$X/a, we have χ(p) = {a1, b, a2, $X}.

Definition 5.7 (Base of a Predicate). For any Step of the form “ax :: nt [p]” where ax
is an Axis, nt is a NameTest and p is a Pattern, we define the base of [p] as β(p) = nt.

Example 5.8. For the PathExpr A/B[C[D]] we have β(C[D]) = B and β(D) = C.

Definition 5.9 (Flattening a Pattern). For a Pattern P , P̃ is the result of removing
all the Predicates from P .

Example 5.10. Consider p = A/B[C[D]]. Then, p̃ = A/B. Thus, χ(p) may be different
from χ(p̃).

Definition 5.11 (Meaning of a Pattern). Given an XML tree Tr, for any Pattern P
we define its meaning, denoted as [[p]]Tr, recursively, as follows 18 where [[p]]Tr ⊆ (N ×
(χ(P ) ∪ {⊥}))∗ :

— If P = doc() p, define
[[doc() p]] = {〈(root(Tr) : ⊥), (n1 : L1), · · · (nk : Lk)〉 ∈ [[p]]}

— If P = p where p is a PathExpr, define
[[p]] = {〈(n1 : L1), · · · , (nk : Lk)〉 | ni ∈ N,Li ∈ χ(p̃) ∪ {⊥}}

18For brevity, we assume the tree is fixed and thus, denote [[p]]Tr as [[p]].

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:22 B. Mozafari et al.

— If P is a single Step of form nt :: ax where nt and ax are the NameTest and Axis,
respectively, define
[[nt :: ax]] = {〈(n : ⊥), (m : nt)〉 | n,m ∈ N,L(m) = nt and (n,m) ∈ Rax}

— If P is a single Step of form nt :: ax[p] where nt, ax, and p are the NameTest, Axis,
and Pattern19 respectively, define
[[nt :: ax[p]]] = {〈(n0 : ⊥), (n : l)〉) | 〈(n0 : ⊥), (n : l)〉 ∈ [[nt :: ax]], ∃α s.t. 〈(n : ⊥), α〉 ∈
[[p]]}

— If P is a path variable v with the definition (v : p) define [[v]] = [[p]]
— If P = p1p2, define

[[p1p2]] = {〈α1, (n : l), α2〉 | ∃n, l s.t. 〈α1, (n : l)〉 ∈ [[p1]] and 〈(n : ⊥), α2〉 ∈ [[p2]]}
— If P = (p)∗, define

[[(p)∗]] = {〈(n0 : l0), α1, (n1 : l1), α2, (n2 : l2), · · · , (nk−1 : lk−1), αk, (nk : lk)〉 | 〈(ni−1 :
⊥), αi, (ni : li)〉 ∈ [[p]] for i = 1, · · · , k} ∪ {ǫ}

Example 5.12. Consider an XML tree Tr = (V, L, ↓,→), where V = {a1, b1, b2, c1},
L = {(a1, a), (b1, b), (b2, b), (c1, c)}, R↓ = {(a1, b1), (a1, b2), (b1, c2)}, and R→ = {(b1, b2)}.
Here, even though:
[[doc()/a/b]] = {〈(root(Tr) : ⊥), (a1 : a), (b1 : b)〉, 〈(root(Tr) : ⊥), (a1 : a), (b2 : b)〉},
[[doc()/a/b[/c]]] contains only one sequence, i.e.,
[[doc()/a/b[/c]]] = {〈(root(Tr) : ⊥), (a1 : a), (b1 : b)〉}.
〈(root(Tr) : ⊥), (a1 : a), (b2 : b)〉 is not in [[doc()/a/b[/c]]] because there is no sequence
starting with (b2 : ⊥) in [[/c]] = {〈(b1 : ⊥)(c1 : c)〉}.

Definition 5.13 (Environment). An environment is any mapping eP,α,n : χ(P ) →
N ∪ {⊥} where P is a Pattern, α ∈ [[p]], and n ∈ N ∪ {⊥}.

Definition 5.14 (Valid Environment). An environment eP,α,n is valid iff one of the
following conditions holds:

(1) P is a PathExpr, P = P̃ , and for all l ∈ χ(P ) we have eP,α,n(l) = n′ if there exists n′

such that α = 〈(n : ⊥), · · · , (n′ : l), · · · 〉
(2) P is a PathExpr with top-level Predicates20 p1, · · · , pk, and there exist αi ∈ [[pi]]

for 1 ≤ i ≤ k such that eP,α,n = eP̃ ,α,n

⋃
∪ki=1epi,αi,eP̃ ,n

(β(pi)) where eP̃ ,α,n and

epi,αi,eP̃ ,n
(β(pi)) are also valid environments.

(3) P = doc() p where p is a PathExpr, and there exist α′ ∈ [[p]] such that ep,α′,root(Tr)

is a valid environment.

Example 5.15. Given the XML tree defined in Example 5.12, consider Pattern
P = doc()/a/$X [/c]. The environment eP,α,root(Tr) is valid if α = {〈(root(Tr) : ⊥), (a1 :
a), (b1 : $X)〉}, and eP,α,root(Tr)($X) = b1.

Definition 5.16 (Condition Evaluation Under A Valid Environment). We define
when a Condition C evaluates to true under a valid environment e (which we denote
as e |= C) by defining how to replace different types of Operand with constant values.
Once all the Operands in C are replaced with their constant values, the entire
Condition can be also evaluated by following the conventional rules of arithmetic and
boolean expression. There are different types of Operands:

— Constant is trivial.
— seq(X)@attr, where α = 〈(n1, l1), ..., (ni, li), ...(nm, lm)〉 and eP,α,n(X) = ni, is re-

placed with attribute ‘attr’ of node nj, 1 ≤ j ≤ m where lj = X and :

19Note that since the query is normalized, here we do not need to consider Conditions as Predicate.
20For instance, for p = A/B[C[D]][E]/T [H] the top-level Predicates are p1 = C[D] and p2 = E, and p3 = H.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:23

PathExpr ::= PathExpr ′ ∗′ | PathExpr ′intersect′ PathExpr | VStep
VStep ::= Step Variable∗
Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest
Axis ::= ⊙ | ↓ | ↑ | → | ←

Fig. 8. CXSeq Syntax

— if seq=prev and for j + 1 ≤ k ≤ i− 1, we have lk 6= X ;
— if seq=first, and for 1 ≤ k ≤ j − 1, we have lk 6= X ;
— if seq=last, and for j + 1 ≤ k ≤ m, we have lk 6= X ;

Otherwise, we replace it with the null value.
— X@text() is replaced with the text value of node nj where nj is defined as above.

— agg(X@attr), where X is in P̃ , a valid environment eP,α,n is picked and α =
〈(n1, l1), ..., (ni, li), ...(nm, lm)〉, is replaced with agg({ni|li = X, 1 ≤ i ≤ m}).

Definition 5.17 (Query Evaluation). We say that a query Q = (P,C) recognizes the
XML tree Tr, iff [[doc()P ]] 6= ∅ and for all valid environments eP,root(Tr), eP,root(Tr) |= C.

6. EXPRESSIVENESS AND COMPLEXITY

In Section 4, we provided the high-level idea of how most of XSeq queries can be opti-
mized and translated into equivalent VPAs. In this section, we provide our results on
the expressiveness of XSeq, and its complexity for query evaluation —two fundamental
questions for any query language.

Throughout this section, Σ is the alphabet (i.e., set of unique tokens in the XML
document), and MSO is monadic second order logic over trees.

The full language of XSeq is too rich for a rigorous logical analysis, and thus we focus
on its navigational features by excluding arithmetics, string manipulations and aggre-
gates. Thus, in Section 6.1, we first obtain a more concise language, called CXSeq21.

We show that, given a CXSeq query Q, the set of input trees for which Q contains
a match (we call this the domain of Q) is an MSO definable language. Conversely, for
every MSO definable language L, there exists a CXSeq with domain L. The proof of
this statement can be found in Appendix B.

In Section 6.3, we use this equivalence result to derive the complexity of query eval-
uation of CXSeq queries.

6.1. CXSeq

In Fig. 8, we have provided the syntax of the query language CXSeq.
A query is a tuple K = (V, v0, ρ) where V is a finite set of variables, v0 ∈ V is the

starting variable, and ρ : V × P is a set of productions where P is the set of elements
defined by the grammar in Fig. 8 starting with PathExpr. In the grammar a Variable
is an element of V .

The semantics of a query is given with pairs of nodes and is parameterized over
variables. The idea is that every XPath query that can be “generated” by the above
grammar should be in some sense executed. Consider the query:

(X, ↑:: aX), (X, ↑:: a)

Its semantics should be equivalent to (↑:: a)+.

21Similar approaches in analyzing XPath 1.0 and 2.0, has led to sub-languages Core XPath 1.0[ten Cate and
Marx 2007b] and Core XPath 2.0[ten Cate and Marx 2007a].

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:24 B. Mozafari et al.

Given a variable v ∈ V we define S(v) ⊆ N×N as the set of pairs of nodes that satisfy
the query v. Informally S(v)(n, n′) iff starting in node n we can reach node n′ following
the query v. Informally every variable v defines a set of pair, but the final result of
K is the set of pairs assigned to v0. We can now proceed inductively and define the
semantics as the least fix point of the following relations. Sv,π ⊆ N ×N (for each v and
π) defines the pair of nodes belonging to v when starting with the production π.

(1) if π =↑:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R↓(x, z), then Sv,π(z, y2);
(2) if π =↓:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R↓(z, x) and does not exists z′,

R→(z′, x), then Sv,π(z, y2);
(3) if π =←:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R→(x, z), then Sv,π(z, y2);
(4) if π =→:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R→(z, x), then Sv,π(z, y2);
(5) if π = ⊙ :: s[v1]v2, Sv1(x, y1), Sv2(x, y2), and lab(x) = s, then Sv,π(x, y2);
(6) if π = π1 ∩ π2, Sv,π = Sv,π1

∩ Sv,π2
;

(7) the other cases are analogous.

Finally Sv =
⋃

(v,π)∈ρ Sv,π.

This language allows us to define productions of the form

X :=↓:: aY Z

Without further restrictions this extension would be too expressive. For example the
productions

X :=↓:: aXY, Y :=↓:: b

would represent the query (a/)n(b/)n which is not MSO expressible. In order to reduce
the expressiveness we limit the use of recursion. Given a production p = (v, π) let dv(π)
be the following set of variables:

— dv(π ∩ π′) = dv(π) ∪ dv(π′);
— dv(π∗) = va(π);
— dv(d :: a[v]v1 . . . vn+1) = {v1, . . . , vn};
— dv(d :: a[v]) = {};
— dv(d :: av1 . . . vn+1) = {v1, . . . , vn};
— dv(d :: a) = {}.

Similarly we define for a production p = (v, π) the set va(π) be the following set of
variables:

— va(π ∩ π′) = dv(π) ∪ dv(π′);
— va(π∗) = va(π);
— va(d :: a[v]v1 . . . vn) = {v1, . . . , vn};
— va(d :: a[v]) = {v};
— va(d :: av1 . . . vn) = {v, v1, . . . , vn};
— va(d :: a) = {}.

Now given a variable v ∈ V we define the sets of variables reachable from v as yiv as
the set satisfying the following equation

yiv = {v} ∪
⋃

(v,π)∈ρ

⋃

v′∈va(π)

yiv′

We can now formalize the restriction on our grammar.

Definition 6.1. A query K = (V, v0, ρ) is safe iff for each (v, π) ∈ ρ, for each v′ ∈
dv(π), v 6∈ yi(v′).

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:25

For the rest of the presentation, we will only consider safe CXSeq queries.
Notice that the ↓ axis has the meaning of first child of a node instead of child. This

language also allows to define the operators axis∗ using the ∗ operator. We can also ex-
tend the language to allow nested stars, and the same translation as before will work.
For example the production (v, ((↑: a)v′ ∗ v′′)∗) can be transformed into the following
set of productions

(v, (⊙ : )t1); (t1, (↑: a)t2t1); (t1, (⊙ :: )); (t2, (⊙ : )t3v
′′); (t3, (⊙ : )v′t3); (t3,⊙ : )

where t1, t2, t3 are fresh names.
To better understand the semantics let’s consider the following regular XPath query:

↓:: a ↓:: b(↓:: c)∗

This will be encoded in CXSeq with the following productions:

(X, ↓:: aY Z), (Y, ↓:: b), (Z,⊙ : WZ), (Z,⊙ : ), (W, ↓: c)

where X is the first production.

6.2. Regularity of CXSeq and Complexity

This section contains the two main results on CXSeq. Given a query K we define its
domain as DK = {w|K(w) 6= ∅}. CXSeq is equivalent to MSO in terms of domain
expressiveness and therefore the domain of every CXSeq query can be translated into
a VPA.

THEOREM 6.2. For every CXSeq query K = (V, v0, ρ), the the domain DK of K is an
MSO definable language. Conversely for every MSO definable language L, there exists
a CXSeq query K such that L = DK .

THEOREM 6.3. For every CXSeq query K = (V, v0, ρ), there exists an equivalent VPA

A over Σ such that L(A) = DK . A will have O(r5 · length(K)5 ·2r·length(K)) where r = |ρ|.

The proofs of the above theorems can be found in Appendix B.

6.3. Query Evaluation Complexity

LEMMA 6.4 (QUERY EVALUATION). Data and query complexities for CXSeq’s query
evaluation are PTIME and EXPTIME, respectively.

PROOF. By mapping CXSeq queries into VPAs, the query evaluation of the former
corresponds to the language membership decision of the latter. Using the membership
algorithm provided in [Madhusudan and Viswanathan 2009], we only need space O(s4 ·
log s · d + s4 · n · log n) where n is the length of the input, d is the depth of the XML
document (thus, d < n), and s is the number of the states in the VPA. PTIME data
complexity comes from n and the EXPTIME query complexity comes from s which is
exponential in the query size (see Theorem 6.3).

We conclude this section with a result on containment of query domains.

LEMMA 6.5 (QUERY DOMAIN CONTAINMENT). Given two CXSeq queries K1 and
K2, it is decidable to check whether the domain of K1 is contained in the domain of K2.
Moreover, the problem is 2-EXPTIME-complete.

PROOF. Once two CXSeq queries are translated into VPAs, their query domain con-
tainment problem corresponds to the language inclusion problem for their domain
VPAs, say M1 and M2. To check L(M1) ⊆ L(M2), we check if L(M1) ∩ L(M2) = ∅.
Given M1 with s1 states and M2 with s2 states, we can determinize [Tang 2009] and

complement the latter to get a VPA for L(M2) of size O(2s2
2

). L(M1) ∩ L(M2) is then of

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:26 B. Mozafari et al.

Fig. 9. Contribution of different optimization techniques.

size O(s1 ·2s2
2

), and emptiness check is polynomial (cubic) in the size of this automaton.
Since, s1 and s2 are themselves exponential in the size of their CXSeq queries, mem-
bership in 2-EXPTIME holds. For completeness of the 2-EXPTIME, note that CXSeq
syntactically subsumes Regular XPath(∗,∩) for which the query containment has been
shown to be 2-EXPTIME-complete [Cate and Lutz 2009].

7. EXPERIMENTS

In this section we study the amenability of XSeq language to efficient execution. Our
implementation of the XSeq language consists of a parser, VPA generator, a compile-
time optimizer, and the VPA evaluation and optimization run-time, all coded in Java.
We first evaluate the effectiveness of our different compile-time optimization heuristics
in isolation. We then compare our XSeq system with the state-of-the-art XML engines
for (i) complex sequence queries, (ii) Regular XPath queries, and (iii) simple XPath
queries. While these systems are designed for general XML applications, we show that
XSeq is far more suited for CEP applications. In fact, XSeq achieves up to two orders
of magnitude out-performance on (i) and (ii), and competitive performance on (iii). Fi-
nally, we study the overall performance, throughput and memory usage of our system
under different classes of patterns and queries.

All the experiments were conducted on a 1.6GHz Intel Quad-Core Xeon E5310 Pro-
cessor running Ubuntu 6.06, with 4GB of RAM. We have used several real-world
datasets including NASDAQ stocks that contains more than 7.6M records22 since 1970,
and also the Treebank dataset23 that contains English sentences from Wall Street
Journal and has with a deep recursive structure (max-depth of 36 and avg-depth of 8).
We have also used XMark [Schmidt and et. al. 2002] which is well-known benchmark
for XML systems and provides both data and queries. Due to lack of space, for each ex-
periment we only report the results on one dataset. The results and main observations,
however, were similar across different datasets.

7.1. Effectiveness of Different Optimizations

In this section, we evaluate the effectiveness of the different compile-time optimiza-
tions from Section 4.2, by measuring their individual contribution to the overall perfor-

22http://infochimps.org/dataset/stocks_yahoo_NASDAQ
23http://www.cs.washington.edu/research/xmldatasets/www/repository.html

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:27

(a) (b)

(c) (d)

Fig. 10. XSeq vs. XPath/XQuery engines: (a) ‘V’-pattern query over Nasdaq stocks, (b) Sequence queries
over Nasdaq stocks, (c) Regular XPath queries over XMark data, and (d) conventional XPath queries from
XMark.

mance24. For this purpose, we executed the X2 query from XMark [Schmidt and et. al.
2002] over a wide range of input sizes (generated by XMark, from 50KB to 5MB). The
results of this experiment are reported in Fig. 9, where we use the following acronyms
to refer to different optimization heuristics (see Section 4.2):

Opt-1 Cutting the inferrable prefix
Opt-2 Reducing non-determinism from the pattern clause
Opt-3 Reducing non-determinism from the where clause

In this graph, we have also included the naive and combined (Opt-All) versions,
namely when, respectively, none and all of the compile-time optimizations are applied.
The first observation is that combining all the optimization techniques delivers a dra-
matic improvement in performance (1-2 orders of magnitude, over the naive one).

Cutting the inferable prefix, Opt-1, leads to fewer states in the final VPA. Like other
types of automata, fewer states can significantly reduce the overall degree of non-
determinism. The second reason behind the key role of Opt-1 in the overall perfor-
mance is that it reduces non-determinism from the beginning of the pattern: this is
particularly important because non-determinism in the starting states of a VPA is usu-
ally disastrous as it prevents the VPA from the early detection of unpromising traces of
the input. In contrary, reducing non-determinism in the pattern and the where clause
(Opt-2, Opt-3) has a much more local effect. In other words, the latter techniques only

24The effectiveness of the VPA evaluation and optimization techniques have been previously validated in
their respective papers [Madhusudan and Viswanathan 2009; Mozafari et al. 2010a].

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:28 B. Mozafari et al.

remove the non-determinism from a single state or edge in the automata, while the
rest of the automata may still suffer from non-determinism. However local, Opt-2 and
Opt-3 can still improve the overall performance when combined with Opt-1. This is
because of the extra information that they learn from the DTD file.

7.2. Sequence Queries vs. XPath Engines

We compare our system against two25 of the fastest academic and industrial engines:
MonetDB/XQuery[Boncz and et. al. 2006] and Zorba [Bamford and et. al. 2009]. First,
we used several sequence queries on Nasdaq transactions (embedded in XML tags),
including the ‘V’-shape pattern (defined in Example 3.2 and Query 10). By searching
for half of a ‘V’ pattern, we defined another query to find ‘decreasing stocks’. Also, by
defining two occurrences of a ‘V’ pattern, we defined what is known as the ‘W’-shape
pattern 26. We refer to these queries as S1, S2 and S3. We also defined several Regular
XPath queries over the treebank dataset, named R1, R2, R3 and R4 where,
R1: /FILE/EMPTY(/VP)*/NP,
R2: /FILE(/EMPTY)*/S,
R3: /FILE(/EMPTY)*(/S)*/VP,
R4: /FILE(/EMPTY)*/S(/VP)*/NP

Sequence queries. For expressing these queries (namely S1, S2 and S3) in XQuery,
we had to mimic the notion of ‘immediately following sibling’, i.e. by checking that for
each pair of siblings in the sequence, there are no other nodes in between. The XQuery
versions of S2 has been given in Fig. 1. Due to the similarity of S1 and S3 to S2 here we
omit their XQuery version (roughly speaking, S1 and S3 consist of, respectively, two
and four repetitions of S2).

Not only were sequence queries difficult to express in XPath/ XQuery but were also
extremely inefficient to run. For instance, for the queries at hand, neither of Zorba
or MonetDB could handle any input data larger than 7KB. The processing times of
these sequence queries, over an input size of 7KB, are reported in Fig. 10(b). Note
that the Y-axis is in log-scale: the same sequence queries written in XSeq run between
1-3 orders of magnitude faster than their XPath/XQuery counterparts do on two of
the fastest XML engines. Fig. 10(a) shows that gap between XSeq and the other two
engines grows with the input size. This is due to the linear-time query processing of
XSeq which, in turn, is due to the linear-time algorithm for evaluation of VPAs along
with the backtracking optimizations when the VPA rejects an input [Mozafari et al.
2010a]. Zorba and MonetDB’s processing time for these sequence queries are at least
quadratic, due to the nested nature of the queries.

In summary, the optimized XSeq queries run significantly (1-3 orders of magnitude)
faster than their equivalent counterparts that are expressed in XQuery. This result
indicates that traditional XML languages such as XPath and XQuery (although the-
oretically expressive enough), due to their lack of explicit constructs for sequencing,
are not amenable to effective optimization of complex queries that involve repetition,
sequencing, Kleene-*, etc.

Regular XPath queries. As mentioned in Section 1, despite the many benefits
and applications of Regular XPath, currently there are no implementations for this
language (to our best knowledge). One of the advantages of XSeq is that it can be also
seen as the first implementation of Regular XPath, as the latter is a subset of the
former. In order to study the performance of XSeq for Regular XPath queries (e.g., R1,
· · · , R4) we compared our system with the only other alternative, namely implementing

25Since the sequence queries of this experiment are not expressible in XPath, we could not use the
XSQ [Peng and Chawathe 2003] engine as it does not supports XQuery.
26 ‘W’-pattern (a.k.a. double-bottom) is a well-known query in stock analysis.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:29

(a) (b)
Fig. 11. Effect of different types of XSeq queries on total execution time (a) and memory usage (b).

the Kleene-* operator as a higher-order user-defined functions (UDF) in XQuery. Since
MonetDB does not support such UDFs, we used another engine, namely Saxon [Kay
2008]. The results for 464KB of treebank dataset are presented in Fig. 10(c) as Zorba,
again, could not handle larger input size. Thus, for Regular XPath queries, similarly
to sequence queries, XSeq proves to be 1-2 orders of magnitude faster than Zorba, and
between 2-6 times faster than Saxon. Also, note that the relative advantage of Saxon
over Zorba is only due to the fact that Saxon loads the entire input file in memory
and then performs an in-memory processing of the query [Kay 2008]. However, this
approach is not feasible for streaming or large XML documents27.

7.3. Conventional Queries vs. XPath Engines

As shown in the previous section, complex sequence queries written in XSeq can be ex-
ecuted dramatically faster (from 0.5 to 3 orders of magnitude) than even the fastest of
XPath/ XQuery engines. In this section, we continue our comparison of XSeq and native
XPath engines by considering simpler XPath queries, i.e. queries without sequencing
and Kleene-*. For this purpose, we used the XMark queries which in Fig. 10(d) are
referred to as X1, X2, and so on28. Once again, we executed these queries on MonetDB,
Zorba (as state-of-the-art XPath/XQuery engines) and XSQ (as state-of-the-art stream-
ing XPath engine) as well as on our XSeq engine. In this experiment, the XMark data
size was 57MB. Note that both Zorba and MonetDB are implemented in C/C++ while
XSeq is coded in Java, which generally accounts for an overhead factor of 2X in a fair
comparison with C/C++ implementations. The results are summarized in Fig. 10(d).
The XSeq queries were consistently competitive compared to all the three state-of-the-
art XPath/XQuery engines. XSeq is faster than XSQ for most of the tested queries. For
some queries, e.g. X2 and X4, XSeq is even 2-4 times faster. Even compared with Mon-
etDB and Zorba, XSeq is giving surprisingly competitive performance, and for some
queries, e.g. X4, were even faster. Given that XSeq is coded in Java, this is an out-
standing result for XSeq. For instance, once the java factor is taken into account, the
only XMark query that runs slower on the XSeq engine is X15, while the rest of the
queries will be considered about 2X faster than both MonetDB and Zorba.

In summary, once the maturity of the research on XPath/ XQuery optimization is
taken into account, our natural extension of XPath that relies on a simple VPA-based

27Due to lack of space, we omit the results for the case when the input size cannot fit in the memory. Briefly,
unlike XSeq, Saxon results in using the disk swap, and thus, suffers from a poor performance.
28Due to space limit and similarity of the result , here we only report 7 out of the 20 XMark queries.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:30 B. Mozafari et al.

(a) (b)

Fig. 12. The effect of different types of queries on (a) Total query execution time, (b) Throughput in terms
of tuple processing, and (c) Throughput in terms of datasize.

optimization seems very promising: XSeq achieves better or comparable performance
on simple queries, and is dramatically faster for more involved queries.

7.4. Throughput for Different Types of Queries

To study the performance of different types of queries in XSeq, we selected four rep-
resentative queries with different characteristics which, based on our experiments,
covered a wide range of different classes of XML queries. To facilitate the discussion,
below we label the XML patterns as ‘flat’, ‘deep’, ‘recursive’ and ‘monotone’:

Q1: flat /site/people/person[@id = ‘person0’]/name/text()
Q2: deep /site/closed auctions/closed auction/annotation/

description/parlist/listitem/parlist/listitem/text/
emph/keyword/text()

Q3: recursive (parlist/listitem)*
Q4: monotonic //closed auctions/

(\X[tag(X)=‘closed auction’ and
X@price < prev(X)@price])*

We executed all these queries on XMark’s dataset. Also, the first two queries (Q1 and
Q2) are directly from XMark benchmark (referred to as Q1 and Q15 in [Schmidt and
et. al. 2002]). We refer to them as ‘flat’ and ‘deep’ queries, respectively, due to their few
and many axes. In XMark’s dataset, the parlist and listitem nodes can contain one
another, which when combined with the Kleene-*, is the reason why we have named Q3
‘recursive’. The Q4 query, called ‘monotonic’, searches for all sequences of consecutive
closed auctions where the price is strictly decreasing. These queries reveal interesting
facts about the nature of XSeq language and provide insight on the types of XSeq
queries that are more amenable to efficient execution under the VPA optimizations.

The query processing time is reported in Fig. 11(a). The first important observation
is that XSeq has allowed for linear scalability in terms of processing time, regardless
of the query type. This has enabled our XSeq engine to steadily maintain an impres-
sive throughput of 200,000-700,000 tuples/sec, or equivalently, 8-31 MB/sec even when
facing an input size of 450MB. This is shown in Fig. 12(a) and 12(b) in which the X-
axes are drawn in log-scale. Interestingly, the throughput gradually improves when
the window size grows from 200K to 1.1M tuples. This is mainly due to the amortized
cost of VPA construction and compilation, and other run-time optimizations such as
backtrack matrices [Mozafari et al. 2010a] that need to be calculated only once.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:31

Among these queries, the best performance is delivered for Q3 and Q4. This is be-
cause they consist of only two XPath steps, and therefore, once translated into VPA,
result in fewer states. Q1 comes next, as it contains more steps and thus, a longer pat-
tern clause. Q2 achieves the worst performance. This is again expected, because Q2’s
deep structure contains many tag names which lead to more states in the final VPA. In
summary, this experiment shows that with the help of the compile-time and run-time
optimizations, XSeq queries enjoy a linear-time processing. Moreover, the fewer axes
(i.e. steps) involved in the query, the better the performance.

8. PREVIOUS WORK

XML Engines. Given the large amount of previous work on supporting XPath/XQuery
on stored and streaming data, we only provide a short and incomplete overview, focus-
ing on the streaming ones. Several XPath streaming engines have been proposed over
the years, including TwigM [Chen et al. 2006], XSQ [Peng and Chawathe 2003], and
SPEX [Olteanu et al. 2003]; also the processing of regular expressions, which are sim-
ilar to the XPath queries of XSQ, is discussed in [Olteanu et al. 2003] and [Barton and
et. al. 2003]. XAOS [Barton and et. al. 2003] is an XPath processor for XML streams
that also supports reverse axes (parent and ancestor), while support for predicates and
wildcards is discussed in [Josifovski et al. 2005]. Finally, support for XQuery queries
on very small XML messages (<100KB) is discussed in [Florescu and et. al. 2003].

Language extensions. Extending the expressive power of XPath has been the fo-
cus of much research [ten Cate 2006; ten Cate and Marx 2007b; 2007a; ten Cate
and Segoufin 2008; Marx 2005]. For instance, Core XPath 2.0 [ten Cate and Marx
2007a], extended Core XPath 1.0 with path intersection, complementation, and quan-
tified variables. Conditional XPath [Marx 2005], extended XPath with ‘until’ operators,
while the inclusion of a least fixed point operator was proposed in [ten Cate 2006].
More modest extensions, that better preserved the intuitive clarity and simplicity of
Core XPath 1.0, included Regular XPath [ten Cate 2006], Regular XPath≈ [ten Cate
and Marx 2007b] and Regular XPath(W) [ten Cate and Segoufin 2008]. These allowed
expressions such as /a(/b/c)∗/d, where a Kleene-* expression A∗, was defined as the
infinite union · ∪ A ∪ (A/A) ∪ (A/A/A) ∪ · · · Even for these more modest extensions,
however, efficient implementation remained an issue: in 2006, the following open prob-
lem was declared as a challenge for the field [ten Cate 2006]: Efficient algorithms for
computing the transitive closure of XPath path expressions.

VPA. Visibly Pushdown Automata (VPA) have been recently proposed for checking
Monadic Second Order (MSO) formulas over dual-structured data such as XML [Alur
and Madhusudan 2004; 2006], and have led to new streaming algorithms for XML pro-
cessing [Madhusudan and Viswanathan 2009; Pitcher 2005]. The recently proposed
query language K*SQL [Mozafari et al. 2010b; 2010a] used VPAs to achieve good per-
formance and expressivity levels needed to query both relational and XML streams.
However, while very natural for relational data, K*SQL is quite procedural and ver-
bose for XML, whereby the equivalents of simple XPath queries are long and complex
K*SQL statements. At the VPA implementation level, however, the same VPA opti-
mization techniques support both XSeq and K*SQL.

Gauwin and Niehren provided translations for a streamable fragment of forward
XPath into nested word automata [Gauwin and Niehren 2011]. XSeq on the other
hand, is an MSO-complete language (and hence, subsumes XPath) and therefore, our
translation to VPAs handles a much larger class of queries.

The current manuscript is an extended version of a conference paper [Mozafari et al.
2012], with new material that were not published in the SIGMOD version, including

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:32 B. Mozafari et al.

new applications (Sections 3.6, 3.8), formal semantics (Section 5), and proofs and com-
plexity results (Sections 6.1, 6.2 and Appendix B).

9. CONCLUSION AND FUTURE WORK

We have described the design and implementation of XSeq, a query language for XML
streams that adds powerful extensions to XPath while remaining very amenable to op-
timization and efficient implementation. We studied the power and efficiency of XSeq
both in theory and in practice, and proved that XSeq subsumes Regular XPath and
its dialects, and hence, provides the first implementation of these languages as well.
Then, we showed that well-known complex queries from diverse applications, can be
easily expressed in XSeq, whereas they are difficult or impossible to express in XPath
and its dialects. The design and implementation of XSeq leveraged recent advances in
VPAs and their online evaluation and optimization techniques.

Inasmuch as XPath provides the kernel of several query languages, such as XQuery,
we expect that these languages will also benefit from the extensions and implementa-
tion techniques described in this paper. In analogy to YFilter [Diao et al. 2003], where
thousands of XPath expressions were merged into one NFA, the fact that VPAs are
closed under union creates important opportunities for concurrent execution of nu-
merous number of XSeq queries. Another line of future research is to use XSeq in ap-
plications with other examples of visibly pushdown words, such as software analysis,
JSON files, and RNA sequences.

ACKNOWLEDGMENTS

This work was supported in part by NSF (Grant No. IIS 1118107). We would like to thank the reviewers,
Balder ten Cate, Alexander Shkapsky, Nikolay Laptev and Shi Gao for their comments.

REFERENCES

ALEXANDER, M., FAWCETT, J., AND RUNCIMAN, P. 2000. Nursing practice: hospital and home : the adult.
Churchill Livingstone; 2nd edition.

ALUR, R. AND MADHUSUDAN, P. 2004. Visibly pushdown languages. In STOC.

ALUR, R. AND MADHUSUDAN, P. 2006. Adding nesting structure to words. In Developments in Language
Theory.

AMAGASA, T., YOSHIKAWA, M., AND UEMURA, S. 2000. A data model for temporal xml documents. In
DEXA. 334–344.

BAMFORD, R. AND ET. AL. 2009. Xquery reloaded. VLDB.

BARTON, C. AND ET. AL. 2003. Streaming xpath processing with forward and backward axes. In ICDE.

BONCZ, P. AND ET. AL. 2006. Monetdb/xquery: a fast xquery processor powered by a relational engine. In
SIGMOD.

BRENNA, L., GEHRKE, J., HONG, M., AND JOHANSEN, D. 2009. Distributed event stream processing with
non-deterministic finite automata. In DEBS.

CATE, B. T. AND LUTZ, C. 2009. The complexity of query containment in expressive fragments of xpath 2.0.
J. ACM 56, 6.

CHEN, Y., DAVIDSON, S. B., AND ZHENG, Y. 2006. An efficient xpath query processor for xml streams. In
ICDE.

DIAO, Y., ALTINEL, M., FRANKLIN, M. J., ZHANG, H., AND FISCHER, P. 2003. Path sharing and predicate
evaluation for high-performance xml filtering. TODS 28, 4.

FLORESCU, D. AND ET. AL. 2003. The bea/xqrl streaming xquery processor. In VLDB.

FURCHE, T., GOTTLOB, G., GRASSO, G., SCHALLHART, C., AND SELLERS, A. J. 2011. Oxpath: A language
for scalable, memory-efficient data extraction from web applications. PVLDB 4, 11.

GAUWIN, O. AND NIEHREN, J. 2011. Streamable fragments of forward xpath. In CIAA. 3–15.

GAUWIN, O., NIEHREN, J., AND TISON, S. 2011. Queries on xml streams with bounded delay and concur-
rency. Inf. Comput. 209, 3, 409–442.

JOSIFOVSKI, V., FONTOURA, M., AND BARTA, A. 2005. Querying xml streams. VLDB Journal 14, 2.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:33

KAY, M. 2008. Ten reasons why saxon xquery is fast. IEEE Data Eng. Bull. 31, 4.

KNUTH, D. E., JR., J. H. M., AND PRATT, V. R. 1977. Fast pattern matching in strings. SIAM J. Com-
put. 6, 2.

KOCH, C. 2009. Xml stream processing. In Encyclopedia of Database Systems.

LAPTEV, N. AND ZANIOLO, C. 2012. Optimization of massive pattern queries by dynamic configuration
morphing. In ICDE. 917–928.

LUCKHAM, D. C. 2001. The Power of Events: An Introduction to Complex Event Processing in Distributed
Enterprise Systems. Addison-Wesley.

MADHUSUDAN, P. AND VISWANATHAN, M. 2009. Query automata for nested words. In MFCS.

MARX, M. 2005. Conditional xpath. TODS 30, 4.

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2010a. From regular expressions to nested words: Unifying
languages and query execution for relational and xml sequences. PVLDB 3, 1.

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2010b. K*sql: A unifying engine for sequence patterns and xml.
In SIGMOD.

MOZAFARI, B., ZENG, K., AND ZANIOLO, C. 2012. High-performance complex event processing over xml
streams. In SIGMOD Conference. 253–264.

OLTEANU, D., KIESLING, T., AND BRY, F. 2003. An evaluation of regular path expressions with qualifiers
against xml streams. In ICDE.

PENG, F. AND CHAWATHE, S. S. 2003. Xpath queries on streaming data. In SIGMOD Conference.

PITCHER, C. 2005. Visibly pushdown expression effects for xml stream processing. In PLAN-X.

SCHMIDT, A. AND ET. AL. 2002. Xmark: a benchmark for xml data management. In VLDB.

SNODGRASS, R. T. 2009. Tsql2. In Encyclopedia of Database Systems.

STRÖMBÄCK, L. AND SCHMIDT, S. 2009. An extension of xquery for graph analysis of biological pathways.
In DBKDA.

TANG, N. V. 2009. A tighter bound for the determinization of visibly pushdown automata. In INFINITY.

TEN CATE, B. 2006. The expressivity of xpath with transitive closure. In PODS.

TEN CATE, B. AND MARX, M. 2007a. Axiomatizing the logical core of xpath 2.0. In ICDT.

TEN CATE, B. AND MARX, M. 2007b. Navigational xpath: calculus and algebra. SIGMOD Record 36, 2.

TEN CATE, B. AND SEGOUFIN, L. 2008. Xpath, transitive closure logic, and nested tree walking automata.
In PODS.

VAGENA, Z., MORO, M. M., AND TSOTRAS, V. J. 2007. Roxsum: Leveraging data aggregation and batch
processing for xml routing. In ICDE.

WANG, F., ZANIOLO, C., AND ZHOU, X. 2008. Archis: an xml-based approach to transaction-time temporal
database systems. VLDB J. 17, 6, 1445–1463.

WU, E., DIAO, Y., AND RIZVI, S. 2006. High-performance complex event processing over streams. In SIG-
MOD.

ZANIOLO, C. 2009. Event-oriented data models and temporal queries in transaction-time databases. In
TIME. 47–53.

ZENG, K., YANG, M., MOZAFARI, B., AND ZANIOLO, C. 2013. Complex pattern matching in complex struc-
tures: the xseq approach. In ICDE Demo.

Received February 2007; revised March 2009; accepted June 2009

APPENDIX

In this appendix, we provide a brief overview of the visibly pushdown automata (VPA)
followed by proofs for our complexity results in Section 6.

A. BACKGROUND ON VPA

Informally, visibly pushdown words and their closely related models, namely nested
words [Alur and Madhusudan 2006], model a sequence of letters (i.e., a “normal”
word) together with hierarchical edges connecting certain positions along the word.
The edges are properly nested (i.e., edges do not cross), but some edges can be pending.
Visibly pushdown words generalize normal words (all positions are internal-data) and
ordered trees. Also, natural operations (such as concatenation, prefix, suffix) on words

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:34 B. Mozafari et al.

are easily generalized to nested words. Visibly pushdown words have found applica-
tions in many areas, ranging from program analysis to XML, and even representations
of genomic data [Alur and Madhusudan 2006].

Visibly Pushdown Automata (VPA) are a natural generalization of finite state au-
tomata to visibly pushdown words. Visibly pushdown languages (VPLs) consist of lan-
guages accepted by VPAs. While VPLs enjoy higher expressiveness and succinctness
compared to word and tree automata, their decision complexity and closure prop-
erties are analogous to the corresponding word and tree special cases. For exam-
ple, VPLs are closed under union, intersection, complementation, concatenation, and
Kleene-* [Alur and Madhusudan 2004]; deterministic VPAs are as expressive as their
non-deterministic counterparts; and membership, emptiness, language inclusion and
equivalence are all decidable [Alur and Madhusudan 2004; 2006]. Next, we briefly re-
call the formal definition of a VPA. Readers are referred to the seminal paper [Alur
and Madhusudan 2004] for more details.

Let Σ be the finite input alphabet, and let Σ = Σc ∪ Σr ∪ Σi be a partition of Σ. The
intuition behind the partition is: Σc is the finite set of call (push) symbols, Σr is the
finite set of return (pop) symbols, and Σi is the finite set of internal symbols. Visibly
pushdown automata are formally defined as follows:

Definition A.1. A visibly pushdown automaton (VPA) M over S is a tuple
(Q,Q0,Γ, δ, F ) where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q
is a set of final states, Γ is a finite stack alphabet with a special symbol ⊥ (repre-
senting the bottom-of-stack), and δ = δc ∪ δr ∪ δi is the transition relation, where
δc ⊆ Q× Σc ×Q× (Γ\{⊥}), δr ⊆ Q× Σr × Γ×Q, and δi ⊆ Q× Σi ×Q.

If (q, c, q′, γ) ∈ δc, where c ∈ Σc and γ 6= ⊥, there is a push-transition from q on input
c where on reading c, γ is pushed onto the stack and the control changes from state q

to q′; we denote such a transition by q
c/+γ
−−−→ q′. Similarly, if (q, r, γ, q′) ∈ δr, there is a

pop-transition from q on input r where γ is read from the top of the stack and popped (if
the top of the stack is ⊥, then it is read but not popped), and the control state changes

from q to q′; we denote such a transition q
r/−γ
−−−→ q′. If (q, i, q′) ∈ δi, there is an internal-

transition from q on input i where on reading i, the state changes from q to q′; we

denote such a transition by q
i
−→ q′. Note that there are no stack operations on internal

transitions. We write St for the set of stacks {w⊥|w ∈ (Γ\{⊥})∗}. A configuration is a
pair (q, σ) of q ∈ Q and σ ∈ St. The transition function of a VPA can be used to define

how the configuration of the machine changes in a single step: we say (q, σ)
a
−→ (q′, σ′)

if one of the following conditions holds:

(1) If a ∈ Σc then there exists γ ∈ Γ such that q
a/+γ
−−−→ q′ and σ′ = γ · σ

(2) If a ∈ Σr, then there exists γ ∈ Γ such that q
a/−γ
−−−→ q′ and either σ = γ · σ′, or γ = ⊥

and σ = σ′ = ⊥
(3) If a ∈ Σi, then γ ∈ γ′ and σ = σ′.

A (q0, w0)-run on a word u = a1 · · · an is a sequence of configurations (q0, w0)
a1−→

(q1, w1) · · ·
an−−→ (qn, wn), and is denoted by (q0, w0)

u
−→ (qn, wn). A word u is accepted

by M if there is a run (q0, w0)
u
−→ (qn, wn) with q0 ∈ Q0, w0 = ⊥, and qn ∈ QF . The

language L(M) is the set of words accepted by M . The language L ⊆ Σ∗ is a visibly
pushdown language (VPL) if there exists a VPA M with L = L(M).

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:35

PathExpr ::= PathExpr ′intersect′ PathExpr | VStep
VStep ::= Step Variable∗
Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest
Axis ::= ⊙ | ↓ | ↑ | → | ←

Fig. 13. CXSeqA

B. CORE XSEQ PROOF OF REGULARITY

In this section, we prove Theorems 6.2 and 6.3. We first introduce two simpler query
languages, called CXSeqA and CXSeqB. Next, we show how every CXSeq query can be
translated into an equivalent CXSeqA query, and every CXSeqA query can be trans-
lated into an equivalent CXSeqB query. Then, we show that the domain of a CXSeqB
query can be captured by a VPA (MSO equivalent model), and for every Top Down
Tree Automata (MSO equivalent model) T, there exists a CXSeq query that has do-
main equivalent to the language of T. These last two results together prove that every
MSO definable language can be expressed as the domain of some CXSeq query and
viceversa (Theorem 6.2). Theorem 6.3 is a consequence of the complexity of the query
transformations.

B.1. Core XSeq with Variable Concatenation

In Fig. 13 we introduce CXSeqA as a syntactic restriction of CXSeq and show that
CXSeq can be compiled to CXSeqA. In the following constructions we will use ∩ instead
of ′intersect′.

THEOREM B.1. Every CXSeq query K can be transformed into an equivalent
CXSeqA query K ′.

PROOF. Given a production (v, π) we define the following function st(π) that extracts
a starred path.

— st(π ∩ π′) = if st(π) 6= null then st(π) else st(π′);
— st(π∗) = π;
— else st(π) = null.

We are given a CXSeq query K = (V, v0, ρ) such that there exists at least a production
(v, π) ∈ ρ such that st(π) 6= null.

We rewrite K as follows.

(1) Pick a production (v, π) such that st(π) = π′;
(2) Replace π′ in π with ⊙ :: fv where fv is a fresh variable;
(3) Add the productions (fv,⊙ :: ) and (fv, πfv);
(4) Repeat from 1 until there are no more starred productions.

The algorithm terminates since at every step one star is eliminated from the produc-
tions. The resulting query is still safe. The new query will have O(|ρ|) productions.

Next we introduce a notion of query size and show that every query of size n is
equivalent to some query of size 0. Given a query K = (V, v0, ρ), the size of K, size(K),
is defined as follows. size(K) = max(v,π)∈ρpsize(π) where

— psize(π ∩ π′) = max(psize(π), psize(π′));
— psize(d :: a[v]v1 . . . vn + 2) = n+ 1;
— psize(d :: a[v]) = 0;
— psize(d :: av1 . . . vn+2) = n+ 1;

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:36 B. Mozafari et al.

— psize(d :: a) = 0.

LEMMA B.2. Every CXSeqA query K of size n can be transformed into an equivalent
CXSeqA query K ′ of size smaller or equal than 1.

PROOF. We are given a CXSeqA query K = (V, v0, ρ) such that there exists at least
a production (v, π) ∈ ρ such that psize(π) > 1.

We pick a production p = (v, π) such that psize(π) > 1 we do the following. We first
remove p from ρ. Now we compute the set of productions prv(π).

— prv(π ∩ π′) = pr(π) ∪ pr(π′);
— prv(d :: a[v]v1 . . . vn+2) = {(v2 . . . vn+2,⊙ :: v2 . . . vn+2)};
— prv(d :: av1 . . . vn+2) = {(v2 . . . vn+2,⊙ :: v2 . . . vn+2)};
— else prv(π) = {}.

and the production prod(π):

— prod(π ∩ π′) = pr(π) ∩ pr(π′);
— prod(d :: a[v]v1 . . . vn+2) = d :: a[v]v1(v2 . . . vn+2);
— prod(d :: av1 . . . vn+2) = d :: a[v]v1(v2 . . . vn+2);
— else prod(π) = π.

Therefore we compute ρ = ρ ∪ pr(π) ∪ {(v, prod(π))}.
We also compute the following new set of variables nv(π).

— nv(π ∩ π′) = pr(π) ∪ pr(π′);
— nv(d :: a[v]v1 . . . vn+2) = {(v2 . . . vn + 2)};
— nv(d :: av1 . . . vn+2) = {(v2 . . . vn + 2)};
— else nv(π) = {}.

Next, we update the set V as follows: V := V ∪Pπ∪{(v, prod(π))}. The algorithm repeats
this step until there are no more productions of size greater than 1. The algorithm
terminates since at every step, if a rule of size n is picked the number of productions
of size n is reduced by one and only rules of size smaller than n are produced.

We now need to show that every intermediate result is a safe query. This is straight-
forward from the construction.

We define the length of a query length(K) as the sum of the length of all the produc-
tions in ρ. length(L) =

∑
(v,π)∈ρ plength(π) where

— plength(π ∩ π′) = plength(π) + plength(π′);
— plength(d :: a[v]v1 . . . vn+1) = n};
— plength(d :: av1 . . . vn+1) = n;
— else plength(π) = 0.

The new query will have O(|ρ| · length(K)) productions.

LEMMA B.3. Every CXSeqA query K can be transformed into an equivalent query
K ′ = (V ′, v′0, ρ

′) where for each production (v, π)ρ′, |dv(π)| = 0.

PROOF. Using lemma B.2 we reduce the query to be of size 1.
Now, we are given a CXSeqA query K = (V, v0, ρ) such that there exists at least a

production (v, π) ∈ ρ such that psize(π) = 1.
For every production p = (v, π) such that psize(π) = 1 we do the following.
We define the following set of variable pairs that need to be normalized as follows.

Given a production (v, π), let vp(π) be defined as follows:

— vp(π1 ∩ π2) = vp(π1) ∪ vp(π2)
— vp(d :: a[v]v1v2) = {(v1, v2)};

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:37

PathExpr ::= PathExpr ′intersect′ PathExpr | VStep
VStep ::= Step Variable | Step
Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest
Axis ::= ⊙ | ↓ | ↑ | → | ←

Fig. 14. CXSeqB

— vp(d :: av1v2) = {(v1, v2)};
— else vp(π) = {}.

We show how to eliminate a single variable pair from all the productions. The algo-
rithm then iterates. Let (v1, v2) be a pair in vp(π) for some (v, π) ∈ ρ.

Let X = nv(v1) and let ρ(X) =
⋃

x∈X ρ(x).
Create a copy of P ′ of P = ρ(X), where each variable occurrence x ∈ X that is not a

predicate is replaced by a new variable x′. The set of production P ′ is used to generate
the concatenation effect in the production p. Compute P ′′ = {(v, hv2(π))|(v, π) ∈ P ′}
using the following function h.

— hv2(π1 ∩ π2) = hv2(π1) ∩ hv2(π2)
— hv2(d :: a[v]) = d :: a[v]v2;
— hv2(d :: a) = d :: av2;
— else hv2(π) = π.

Add P ′′ to the set of productions ρ.
Now, for each production (v, π) ∈ ρ containing v1, v2 replace it with (v, gv1v2(π)) where

— gv1v2(π1 ∩ π2) = g(π1) ∩ g(π2)
— gv1v2(d :: a[v]v1v2) = d :: a[v]v′1;
— gv1v2(d :: av1v2) = d :: av′1;
— else g(π) = π.

Repeat until there are no more production of size 1.
The termination is guaranteed by the fact that whenever a pair (a, b) is eliminated,

the same pair cannot appear in the derivation of a, therefore we can always identifying
a total order in variables v1, . . . , vn , such that whenever we eliminate a pair for a
production vi the number of productions of size 1 out of vi decreases and only the
number of productions for vj , j > i can increase. The correctness of the algorithm is
guaranteed by the fact that every step preserves safety.

B.2. Core XSeq Basic

Fig. 14 presents the syntax of CXSeqB where queries are only allowed to have size 0.
We then show that CXSeqA, and therefore CXSeq, have the same expressiveness as
CXSeqB. Finally we show that all the languages we introduced can be compiled into
equivalent VPA and are all MSO complete.

Using Lemma B.2 and B.3 we prove the following theorem.

THEOREM B.4. Every CXSeqA query K can be transformed into an equivalent
CXSeqB query K ′.

B.2.1. Translating CXSeqB into VPA. In the following we show that a CXSeqB query can
be encoded as an equivalent visibly pushdown automata.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:38 B. Mozafari et al.

THEOREM B.5. For every query K = (V, v0, ρ) in CXSeqB there exists an equivalent
VPA A over Σ such that a word w is accepted by A iff K(w) 6= ∅. A has O(r5 · 2r) states
where r = |ρ|.

PROOF. Given a query K = (V, v0, ρ) we construct an equivalent nondeterministic
VPA A = (Q,Q0,Γ, δ, F ). The main idea of the construction is that each variable v in
V corresponds to a query and at every step the automaton keeps in state the informa-
tion on which queries are consistent with the neighboring nodes. Whenever the state
contains the query v0, a bit is set to 1 to remember that the starting query has been
answered.

The state of A will encode which productions in the grammar the current node and
its neighbors have been traversed with. The construction will be nondeterministic
since some query results will depend on stretches of the input that have not been read
yet. Assuming the query has been executed over the input using a set of productions,
the run of the automaton will guess which productions have been used to process each
element of the input.

We define a notion of consistency that will allow us to show the correctness of the
construction. For v ∈ V , let ρ(v) = {(v, π) | (v, π) ∈ ρ}, be the set of productions in ρ
with first element v. We introduce the function fπ : (V, (Σ ∪ { })5, that given a path
π, computes the set of queries that must answer the current nodes and its neighbors
nodes. We define f inductively as follows:

— f(⊙ :: s[v1]v2) = (({v1, v2}, s), ({}, ), ({}, ), ({}, ), ({}, ));
— f(⊙ :: s[v1]) = (({v1}, s), ({}, ), ({}, ), ({}, ), ({}, ));
— f(⊙ :: s) = (({}, s), ({}, ), ({}, ), ({}, ), ({}, ));
— f(↓:: s[v1]v2) = (({}, ), ({v1, v2}, s), ({}, ), ({}, ), ({}, ));
— f(↑:: s[v1]v2) = (({}, ), ({}, ), ({v1, v2}, s), ({}, ), ({}, ));
— f(↑:: s[v1]v2) = (({}, ), ({}, ), ({}, ), ({v1, v2}, s), ({}, ));
— f(↑:: s[v1]v2) = (({}, ), ({}, ), ({}, ), ({}, ), ({v1, v2}, s));
— if f(π1) = ((C1, c1), (FC1, fc1), (P1, p1), (NS1, ns1), (PS1, ps1)),

and f(π2) = ((C2, c2), (FC2, fc2), (P2, p2), (NS2, ns2), (PS2, ps2)),
then f(π1 ∩ π2) = ((C1 ∪ C2, c1♦c2), (FC1 ∪ FC2, fc1♦fc2), (P1 ∪ P2, p1♦p2), (NS1 ∪
NS2, ns1♦ns2), (PS1 ∪ PS2, ps1♦ps2)), where if a ∈ Σ ∪ { }, then ♦(a, ) = ♦( , a) =
♦(a, a) = a, and it is undefined in any other case (when undefined the path is also
inconsistent, so it should not belong to the productions);

— the omitted cases are similar.

Each state of A is an element of the relation ((2ρ × Σ) ∪ {⊥})5 × {0, 1}, such that
before reading the node n, A is in state ((PC, a), (PFC, b), (PP, c), (PNS, d), (PPS, e), i)
iff

— for each (v, π) ∈ PC there exists a derivation of v starting in n with the production
(v, π) and the label of n is a,

— for each (v, π) ∈ PFC there exists a derivation of v starting from the first child n′

of n with the production (v, π) and the label of n′ is b,
— for each (v, π) ∈ PP there exists a derivation of v starting from the parent n′ of n

with the production (v, π) and the label of n′ is c,
— for each (v, π) ∈ PNS there exists a derivation of v starting from the next sibling n′

of n with the production (v, π) and the label of n′ is d,
— for each (v, π) ∈ PPS there exists a derivation of v starting from the previous

sibling n′ of n with the production (v, π) and the label of n′ is e,
— i = 1 iff a state such that (v0, π) ∈ C, for some π, has been already traversed.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



High-Performance Complex Event Processing over Hierarchical Data 39:39

Whenever a component of the state is ⊥ it means that that neighbor is not defined. For
example if the second component is ⊥ it means that the node does not have a parent.

We need to restrict the states to not violate the semantics of the production we de-
fined before (f ). Given a set of productions Π, we define ν(Π) = {v | ∃(v, π) ∈ Π}. Let T
be the following set:

{((C, a), t1, t2, t3, t4) | (v, π) ∈ C ∧ fv(π) = ((C, a), t1, t2, t3, t4)}

A state ((PC′, a′), (PFC′, b′), (PP ′, c′), (PNS′, d′), (PPS′, e′), i) is consistent with re-
spect to ρ if the following holds:
for each ((C, a), (FC, b), (P, c), (NS, d), (PS, e)) ∈ T ,
♦(a, a′),♦(b, b′),♦(c, c′),♦(d, d′),♦(e, e′) are defined and C ⊆ ν(PC′), FC ⊆ ν(PFC′),
P ⊆ ν(PP ′), NS ⊆ ν(PNS′), and PS ⊆ ν(PPS′). If one of the component is ⊥ the
corresponding pair in the tuple should be ({}, ).

The set of states Q ⊆ ((2ρ × Σ ∪ {⊥})5 × {0, 1} contains all the tuples consistent
with respect to ρ. The set of stack states Γ is the same as Q. The set of initial states is
Q0 = (2ρ ∪ {⊥})× (2ρ ∪ {⊥})× {⊥} × {⊥} × {⊥} × {0, 1} ∩ Q. The set of final states is
F = {⊥} × {⊥} × {⊥} × {⊥} × (2ρ ∪ {⊥})× {0, 1} ∩Q. where only the previous sibling
has replied to some queries (maybe the empty set if the root is not in any). We assume
that A only accepts well-matched words.

We can now give the transition function δ of A. We need to maintain the state in-
variant defined before.

— for every S1, S2 such that (FC, S1, (PC, a), S2,⊥, i) ∈ Q,
(FC, S1, (PC, a), S2,⊥, i), ((PC, a), FC, P,NS, PS, i)) ∈
((PC, a), FC, P,NS, PS, i)(〈a);

— for every S1, S2 such that (FC, S1, (PC, a), S2,⊥, 1) ∈ Q and v0 ∈ ν(PC),
(FC, S1, (PC, a), S2,⊥, i), ((PC, a), FC, P,NS, PS, 1)) ∈
((PC, a), FC, P,NS, PS, 0)(〈a);

— for every S1, S2 such that (NS, S1, P, S2, C,max(i, j)) ∈ Q,
(NS, S1, P, S2, C,max(i, j)) ∈ (⊥,⊥, P ′, PS′,⊥, i)(a〉, (C,FC, P,NS, PS, j).

This concludes the proof.
We can actually show that A does not need to have Σ as a state component, but can

instead just keep a set Σ′ ∪ { } where Σ′ contains only symbols that actually appear in
the query, and is a place holder for all the other symbols.

The automaton will have O(r5 · 2r) states where r = |ρ|.

B.2.2. Translating Top-down Tree Automata into CXSeqB. To show MSO completeness we
translate nondeterministic Top-Down Tree Automata (TA) into CXSeqB. A TA A over
binary trees, is a tuple (Q, q0, δ) where Q is a set of states and q0 ∈ Q is the initial states.
The productions in δ are of the form: q(b(x, y)) → q1(x), q2(y) or q(z) where z and b are
respectively a leaf and an internal node. The set of tree accepted by A starting in state
q (Lq) is defined inductively as follows: 1) a(x, y) ∈ Lq if q(a(x, y))→ q1(x), q2(y) ∈ δ and
x ∈ Lq1 and y ∈ Lq2 , 2) b ∈ Lq if q(b) ∈ δ.

We consider an encoding of unranked trees into binary trees where for each node
n = a(x, y), x, n has label a, x is the first child of n and y is the next sibling of n.

Given a TA A = (Q, q0, δ) we construct an equivalent query (V, v0, ρ), where V = Q,
v0 = q0 and ρ is defined as follows. For every rule q(z) ∈ δ the production (q, z :: ⊙) will
belong to ρ. For every rule q(b(x, y)) → q1(x), q2(y) ∈ δ the production (q, (⊙ :: b) ∩ (↓::
[q1]) ∩ (→:: [q2])) will belong to ρ.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:40 B. Mozafari et al.

B.3. Regularity of CXSeq and Complexity

The next two theorems follow from the transformation of Section B.2.2 and Theo-
rem B.5.

THEOREM 6.2. For every CXSeq query K = (V, v0, ρ), the domain DK of K is an
MSO definable language. Conversely for every MSO definable language L, there exists
a CXSeq query K such that L = DK .

THEOREM 6.3. For every CXSeq query K = (V, v0, ρ), there exists an equivalent VPA

A over Σ such that L(A) = DK . A will have O(r5 · length(K)5 ·2r·length(K)) where r = |ρ|.

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.


