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ABSTRACT
Much research attention has been given to high-performance sys-
tems that are capable of complex event processing (CEP) in a wide
range of applications. However, current CEP systems can only pro-
cess data having a simple structure, and are otherwise limited in
their ability to efficiently support complex continuous queries on
semi-structured information. However, XML-like streams repre-
sent a very popular form of data exchange, comprising large por-
tions of social network and RSS feeds, financial feeds, configura-
tion files, and similar applications requiring advanced CEP queries.
In this paper, we present the XSeq language and system that sup-
port CEP on XML streams, via an extension of XPath that is both
powerful and amenable to an efficient implementation. Specifi-
cally, the XSeq language extends XPath with natural operators to
express sequential and Kleene-* patterns over XML streams, while
remaining highly amenable to efficient execution. In fact, XSeq
is designed to take full advantage of the recently proposed Vis-
ibly Pushdown Automata (VPA), where higher expressive power
can be achieved without compromising the computationally attrac-
tive properties of finite state automata. Besides the efficiency and
expressivity benefits, the choice of VPA as the underlying model
also enables XSeq go beyond XML streams and be easily appli-
cable to any data with both sequential and hierarchical structures,
including JSON messages, RNA sequences, and software traces.
We illustrate the XSeq’s power for CEP applications through ex-
amples from different domains and provide formal results on its
expressiveness and complexity. Finally, we present several opti-
mization techniques for XSeq queries. Our extensive experiments
indicate that XSeq brings outstanding performance to CEP appli-
cations: two orders of magnitude improvement is obtained over the
same queries executed in general-purpose XML engines.

Categories and Subject Descriptors
H.2.3 [Information Systems]: DATABASE MANAGEMENT—
Languages, Query languages
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1. INTRODUCTION
XPath is an important query language on its own merits and also

because it serves as the kernel of other languages used in a wide
range of applications, including XQuery, several graph languages
[29], and OXPath for web information extraction [12]. Much work
has also focused on the efficient support for XPath in the diverse
computational environments required by these applications. In par-
ticular, finite state automata (FSA) have proven to be very effective
at supporting XPath queries over XML streams [16], and are also
apt at providing superior scalability through the right mix of deter-
minism versus non-determinism. In fact, numerous XML engines
have been successfully built for efficient and continuous process-
ing of XML streams [9, 25, 24, 5, 13, 11, 10]. All these systems
support full or fragments of XPath or XQuery, and thus, naturally
inherit the pros and cons of these languages. The simplicity of
XPath and the generality of XQuery have made them very suc-
cessful and effective for general-purpose applications. However,
these languages lack explicit constructs for expressing Kleene-*
and sequential patterns—a vital requirement in many CEP appli-
cations1. As a result, while the existing engines remain very ef-
fective in general-purpose applications over XML streams, their
usability for CEP applications (that involve complex patterns) be-
comes highly limited as none of these engines provide any explicit
sequencing/Kleene-* constructs over XML.

To better illustrate the difficulty of expressing sequence queries
in existing XML engines (that mostly support fragments of XPath/
XQuery), in Figure 1 we have expressed a common query from
stock analysis in XPath 2.0, where the user is interested in a se-
quence of stocks with falling prices2. As shown in this example,
due to the lack of explicit constructs for sequencing and Kleene-*
patterns, the query in XPath/ XQuery is very hard to write and un-
derstand for humans and is also difficult to optimize. In fact, it is
not a surprise that the general-purpose XML engines perform two
orders of magnitude slower on these complex sequential queries
than the same queries expressed and executed in XSeq (the lan-
guage and system presented in this paper), whereby explicit con-
structs for Kleene-* patterns and effective VPA-based optimiza-
tions allow for high-performance execution of CEP queries.

These limitations of XPath are not new, as several extensions

1There are several definitions of CEP applications [7, 18, 36], but
they commonly involve three requirements: (i) complex predicates
(filtering, correlation), (ii) temporal/order/sequential patterns, and
(iii) transforming the event(s) into more complex structures. In this
paper we mainly focus on (i) and (ii) while achieving (iii) repre-
sents a direction for future research, e.g. by embedding our lan-
guage (called XSeq) inside XSLT.
2In fact, in practice, stock queries tend to be much more complex,
e.g. in a wedge pattern (www.investopedia.com), the user
seeks an arbitrary number of falling and rising phases of a stock.



<result>{
for $t1 in doc("auction.xml")//Stock[@stock_symbol=‘DAGM’] return
<head>{$t1/@close}{
for $t4 in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’] where $t4/@close<=$t1/@close
and (every $t2 in for $x in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4 return $x satisfies $t2/@close<=$t1/@close and $t2/@close>=$t4/@close)
and (every $t2 in for $x in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4 return $x, $t3 in for $x in $t2/following-sibling::Stock[@stock_symbol=‘DAGM’]
where $x<<$t4 return $x satisfies $t2/@close>=$t3/@close and $t3/@close>=$t4/@close)

return <bottom> {$t4/@close} </bottom>
} </head>
}</result>

Figure 1: A query in XPath 2.0/XQuery for a sequence of ‘falling price’ in Nasdaq’s XML.

of XPath have been previously proposed in the literature [31, 33,
32]. However, the efficient implementation of these extensions re-
mained an open research challenge, which the papers proposing
said extensions did not tackle neither for stored data nor for data
streams. In fact, the following was declared to be an important
open problem since 2006 [31]: Efficient algorithms for computing
the transitive closure of XPath path expressions.

Fortunately, significant advances have been recently made in au-
tomata theory with the introduction of Visible Pushdown Automata [2,
3]. VPAs strike a balance between expressiveness and tractabil-
ity: unlike pushdown automata (PDA), VPAs have all the appeal-
ing properties of FSA (a.k.a. word automata). For instance, VPAs
enjoy higher expressiveness (than word automata) and more suc-
cinctness (than tree automata), while their decision complexity and
closure properties are analogous to word automata, e.g., VPAs are
closed under union, intersection, complementation, concatenation,
and Kleene-*; their deterministic versions are as expressive as their
non-deterministic counterparts; and membership, emptiness, lan-
guage inclusion and equivalence are all decidable [2, 3]. However
unlike word automata, VPAs can model and query well-nested data
such as XML, JSON files, RNA sequences and software traces [3].

Although these new types of automata can bring major benefits
in terms of expressive power, to the best of our knowledge, their
optimization and efficient implementation in the context of XPath-
based query languages has not been explored before. In this paper,
we introduce the XSeq language which achieves new levels of ex-
pressive power supported by a very efficient implementation tech-
nology. XSeq extends XPath with powerful constructs that support
(i) the specification of and search for complex sequential patterns
over XML, and (ii) efficient implementation using the Kleene-* op-
timization technology and streaming Visibly Pushdown Automata.

Being able to compile complex pattern queries into equivalent
VPAs has several key benefits. First, it allows for expressing com-
plex queries that are common in CEP applications. Second, it al-
lows for efficient stream processing algorithms. Finally, the close-
ness of VPAs under union operation creates the same opportunities
for CEP systems (through combining their corresponding VPAs)
that the closeness of NFAs (non-deterministic finite automata) cre-
ated for publish-subscribe systems [10, 35, 17] where simultaneous
processing of massive number of queries becomes possible through
merging the corresponding automata of the individual queries.
Contributions. We make the following contributions:

1. The design of XSeq, a powerful and user-friendly query lan-
guage for CEP over XML.

2. An efficient implementation for XSeq based on VPA-based
query plans, and several compile-time and run-time optimizations.

3. Formal results on the expressiveness of XSeq, and the com-
plexity of its query evaluation and query containment.

4. An extensive empirical evaluation of XSeq system, using sev-
eral well-known benchmarks, datasets and engines.

5. Our XSeq engine can also be seen as the first optimization for
several of the previously proposed languages that are subsumed in
XSeq but were never implemented (e.g. [31, 34, 33]).

Paper Organization. We present the main constructs of our lan-

XSeqQuery ← [return Output from] PathExpr
[partition by PathExpr][where Condition]

Output ← OutTerm[,Output]
OutTerm ← OutBase[@attr] | Aggr ‘(′ OutBase@attr ‘)′

OutBase ← ‘$′ variable | SeqAggr ‘(′ variable ‘)′

Aggr ← max | min | count | sum | avg
SeqAggr ← first | last | prev

Axis ← self | child | parent | descendant | ancestor
| following_sibling | preceding_sibling
| child ‘\′ | following_sibling ‘\′

NameTest ← ID | ‘ ∗′ | ‘$′ variable
Step ← Axis ‘ ::′ NameTest

PathExpr ← Step
| PathExpr ‘/′ PathExpr
| PathExpr union PathExpr
| PathExpr intersect PathExpr
| PathExpr ‘[′ NodeExpr ‘]′

| ‘(′ PathExpr ‘)′ ‘∗′
NodeExpr ← PathExpr | Condition | not NodeExpr

| NodeExpr and NodeExpr
| NodeExpr or NodeExpr

Condition ← {See Appendix A.}

Figure 2: Simplified Syntax of XSeq.

guage in Section 2 using simple examples. The generality and ver-
satility of XSeq for expressing CEP queries is illustrated in Sec-
tion 3 where several well-known queries are discussed. Our query
execution and optimization techniques are presented in Section 4,
followed by our formal results in Section 5. Our results are empir-
ically validated in Section 6. After an overview of the related work
in Section 7, we conclude in Section 8.

2. XSEQ QUERY LANGUAGE
In this section, we briefly introduce the query language sup-

ported by our CEP system, called XSeq. The simplified syntax
of XSeq is given in Figure 2 which suffices for the sake of this pre-
sentation. Below we explain the semantics of XSeq via simple ex-
amples and leave the formal semantics in our technical report [23].

Inherited Constructs from Core XPath. The navigational frag-
ments of XPath 1.0 and 2.0 are called, respectively, Core XPath
1.0 [33] and 2.0 [32]. The semantics of these common constructs
are similar to XPath (e.g., axes, attributes). Other syntactic con-
structs of XPath (e.g. the following axis) can be easily expressed
in terms of these main constructs (see [32]). In XSeq there are two
new axes to express the immediately following 3 notion, namely
child\ and following_sibling\, which are described later on.
Some of the axes in XSeq have shorthands:

Axis Shorthand
self .

child /
descendant //

following_sibling λ (empty string, i.e. default axis)
following_sibling \ \

child \ / \
3XSeq does not have analogous operators for immediately preced-
ing since backward axes of XPath are rarely used in practice.



EXAMPLE 1 (A family tree.). Our XML document is a fam-
ily tree where every node has several attributes: Cname (for name),
Bdate (for birthdate), Bplace (for the city of birth) and each node
can contain an arbitrary number of sub-entities Son and Daughter.
Under each node, the siblings are ordered by their Bdate.

In the following, we use this schema as our running example.

EXAMPLE 2. Find the birthday of Mary’s sons.

QUERY 3. //daughter[@Cname=‘Mary’]/son/@Bdate

Kleene-* and parentheses. Similar to Regular XPath [31] and its
dialects [33, 34], XSeq supports path expressions such as /a(/b/c)∗/d,
where a Kleene-* expression A∗ is defined as the infinite union
· ∪A ∪ (A/A) ∪ (A/A/A) ∪ · · ·

EXAMPLE 4. Find those sons born in ‘New York’, who had a
chain of male descendants in which all the intermediary sons were
born in ‘Los Angeles’ and the last one was again born in ‘New
York’. For all such chains, return the name of the last son.4

QUERY 5.
//son[@Bplace=‘NY’](/son[@Bplace=‘LA’])*/son[@Bplace=‘NY’

]/@Cname

The parentheses in ()∗ can be omitted when there is no ambigu-
ity. Also, note the difference between the semantics of (/son)∗
and //son: the latter only requires a son in the last step rather than
the entire path.

Syntactic Alternatives. In XSeq, the node selection conditions
can be alternatively moved to an optional where clause, in favor
of readability. When a condition is moved to the where clause, its
step should be replaced with a variable (variables in XSeq start with
$). Also, similarly to XPath 2.0 and XQuery, the query output in
XSeq can be moved to an optional return clause. Query 6 below
is an alternative way of writing Query 5 in XSeq. Here, tag($X)
returns the tag name of variable $X .

QUERY 6.
return $B@Cname
from //son[@Bplace=‘NY’] (/$A)* /$B[@Bplace=‘NY’]
where tag($A)=‘son’ and $A@Bplace=‘LA’ and tag($B)=‘son’

For clarity, in this paper we mainly use this alternative syntax.

Order Semantics, Aggregates. XSeq is a sequence query lan-
guage. Therefore, unlike XPath where the input and output are a
set (or binary relation), in XSeq the XML stream is viewed as a
pre-order traversal of the XML tree. Thus, both the input and the
output of an XSeq query are a sequence. The XML nodes are or-
dered according to5 their relative position in the XML document.

As a result, besides the traditional aggregates (e.g. sum, max),
XSeq also supports sequential aggregates (SeqAggr in Figure 2)
which are only applied to variables under a Kleene-* 6. For in-
stance, the path expression /son(/$X)∗, last($X)@name returns
the name of the last X in the (/$X)∗ sequence. Similarly, first($X)
returns the first node of the (/$X)∗ and prev($X) returns the node
before the current node of the sequence. Finally, $X@Bdate >

4This is an example of a well-known class of XML queries which
has been proven [31] as not expressible in Core XPath 1.0.
5When a WINDOW is defined over the XML stream, the input
nodes can be re-ordered. For simplicity of the discussion, we do
not discuss re-ordering.
6XSeq also supports sequential aggregates on compound Kleene-*,
e.g. (/son/$X)∗. The full syntax and semantics are in [23].

prev($X)@Bdate ensures that the nodes that match (/$X)∗ are in
increasing order of their birth date.

Siblings. Since XSeq is designed for complex sequential queries,
its default axis (i.e. when no explicit axis is given) is the ‘follow-
ing_sibling’. The omission of the ‘following_sibling’ allows for
concise expression of complex horizontal patterns.

EXAMPLE 7. Find all the younger brothers of ‘Mary’.

QUERY 8. return $S@Cname
from // $D[@Cname=‘Mary’] $S
where tag($D)=‘daughter’ and tag($S)=‘son’

Here, since no other axes appear between D and S, they are treated
as siblings.

Immediately Following. This is the construct that gives XSeq a
clear advantage over all the previous extensions of XPath in terms
of expressiveness, succinctness and optimizability. We believe that
one of the main shortcomings of the previous XML languages for
CEP applications is their lack of explicit constructs for express-
ing the notion of ‘immediately following’ (see Section 3). Thus,
to overcome this, XSeq provides two explicit axes, \ and /\, for
immediately following semantics. For example, Y\X will return the
immediately next sibling of node Y, while Y/\X will return the very
first child of node Y. Similarly to other constructs, these operators
return an empty set if no such node can be found, e.g., when we are
at the last sibling or a node with no children.

EXAMPLE 9. Find the first two elder siblings of ‘Mary’.

QUERY 10. return $X@Cname, $Y@Cname
from //daughter[@Cname=‘Mary’] \ $X \ $Y

EXAMPLE 11. Find the second child of ‘Mary’.

QUERY 12. return $Y@Cname
from //daughter[@Cname=‘Mary’] / \ $X \ $Y

Partition By. Inspired by relational Data Stream Management Sys-
tems (DSMS), XSeq supports a partitioning operator that is very
essential for many CEP applications. Nodes can be partitioned by
their key, so that different groups can be processed in parallel as
the XML stream arrives. Although this construct does not add to
the expressiveness, it provides a more concise syntax for complex
queries and better opportunities for optimization. However, XSeq
only allows partitioning by an attribute field and requires that ex-
cept this attribute, the rest of the path expression in the partitioning
clause be a prefix of the path expression in the from clause. This
constraint is important for ensuring efficiency and also for avoiding
queries with ill semantics.

EXAMPLE 13. For each city, find the oldest person born there.

By knowing the cities that are present in our XML, we could write
several queries, one for each city, e.g., min(//son[@Bplace =
′LA′]@Bdate). However, in streaming applications such informa-
tion is generally not provided a priori. Moreover, instead of run-
ning several queries over the same stream, an explicit partition by
clause allows for simultaneous handling of different key values and
is much easier to optimize. For instance:

QUERY 14. return $X@Bplace, min($X@Bdate)
from //$X
partition by //son@Bplace
where tag($X) = ‘son’



<! DOCTYPE stocks [
<! ELEMENT stocks (transaction*)>
<! ATTLIST transaction company CDATA #REQUIRED>
<! ATTLIST transaction price CDATA #REQUIRED>
<! ATTLIST transaction buyer IDREF #REQUIRED>
<! ATTLIST transaction date CDATA #REQUIRED> ]>

Figure 3: The DTD for the stream of Nasdaq transactions.

If the user desires an XML output, he can embed the XSeq query
in an XQuery or XSLT expression. 7 Here, we only covered the ba-
sic constructs of XSeq that are needed in the paper. More details on
the syntax is provided in Appendix A. Next, we will use these basic
constructs to express more advanced queries from a wide range of
CEP applications.

3. ADVANCED QUERIES FROM COMPLEX
EVENT PROCESSING

In this section we present more complex examples from several
domains and show that XSeq can easily express such queries.

Stock Analysis. Consider an XML stream of stock quotes as
defined in Figure 3. Let us start with the following example.

EXAMPLE 15 (‘V’-shape pattern). Find those stocks whose
prices have formed a ‘V’-shape. That is, the price has been going
down to a local minimum, then rising up to a local maximum which
was higher than the starting price.

The ‘V’-shape query only exemplifies many important queries
from stock analysis 8 that are provably impossible to express in
Core XPath 1.0 and Regular XPath, simply both of these languages
lack the notion of ‘immediately following sibling’ in their con-
structs. XPath 2.0, however, can express these queries through
the use of its for and quantified variables: using these constructs,
XPath 2.0 can ‘simulate’ the concept of ‘immediately following
sibling’ in XPath 2.0 by double negation, i.e. ensuring that ‘for
each pair of nodes, there is nothing in between’. But this approach
leads to very convoluted XPath expressions which are extremely
hard to write/understand and almost impossible to optimize (See
Figure 1 and Section 6).

On the other hand, XSeq can express this queries with its simple
constructs that can be easily translated and optimized as VPA:

QUERY 16 (‘V’-PATTERN IN XSEQ).
return last($Y)@price
from /stocks /$Z (\ $X)* (\ $Y)*
where tag($Z) = ‘transaction’
and tag($X) = ‘transaction’ and tag($Y) = ‘transaction’
and $X@price < prev($X)@price and $Y@price < prev($Y)@price

partition by /stocks/transaction@company

Social Networks. Twitter provides an API9 to automatically re-
ceive the stream of new tweets in several formats, including XML.
Assume the tweets are ordered according to their date timestamp:

<! DOCTYPE twitter [
<! ELEMENT twitter ((tweet)*)>
<! ELEMENT tweet (message)>
<! ELEMENT message (#PCDATA)>
<! ATTLIST tweet tweetid CDATA #REQUIRED>
<! ATTLIST tweet userid CDATA #REQUIRED>
<! ATTLIST tweet date CDATA #REQUIRED> ]>

EXAMPLE 17 (DETECTING ACTIVE USERS). In a stream of
tweets, report users who have been active over a month. A user is
active if he posts at least a tweet every two days.
7Formatting the output is out of the scope of this paper. Instead,
we only focus on the query expression and its efficient execution
for CEP applications.
8
http://www.chartpattern.com/

9
http://dev.twitter.com/

This query, if not impossible, would be very difficult to express in
XPath 2.0 or Regular XPath. The main reason is that, again due to
their lack of ‘immediate following’, they cannot easily express the
concept of "adjacent" tweets.

QUERY 18 (DETECTING ACTIVE USERS IN XSEQ).
return first($T) @userid
from /twitter /$Z (\ $T)*
where tag($Z) = ‘tweet’ and tag($T) = ‘tweet’
and $T@date-prev($T)@date < 2
and last($T)@date-first($T)@date > 30

partition by /twitter /tweet @userid

Inventory Management. RFID has become a popular technol-
ogy to track inventory as it arrives and leaves retail stores. Below
is a sample schema of events, where events are ordered by their
timestamp:

<! DOCTYPE events [
<! ELEMENT events (event*)>
<! ELEMENT event (message)>
<! ELEMENT message (#PCDATA)>
<! ATTLIST event ts CDATA #REQUIRED>
<! ATTLIST event itemid CDATA #REQUIRED>
<! ATTLIST event eventtype CDATA #REQUIRED> ]>

EXAMPLE 19 (DETECTING ITEM THEFT). Detect when an item
is removed from the shelf and then removed from the store without
being paid for at a register.

QUERY 20 (DETECTING ITEM THEFT IN XSEQ).
return $T@itemid
from /events /$T \$W* \$X
where tag($T) = ‘event’ and tag($W) = ‘event’ and tag($X) = ‘event’
and $T@eventtype = ‘removed from shelf’
and $X@eventtype = ‘removed from store’
and $W@eventtype != ‘paid at register’

partition by /events/event@itemid

Directory Search. Consider the following first-order binary re-
lation which is familiar from temporal logic [33]:
φ(x, y) = descendant(x, y) ∧ q(y)∧

∀z(descendant(x, z) ∧ descendant(z, y)→ p(z))
For instance, for a directory structure that is represented as XML,

by defining q and p predicates as q(y): ‘y is a file’ and p(z): ‘z
is a non-hidden folder’, the φ relation becomes equivalent to the
following query:

EXAMPLE 21. Retrieve all reachable files from the current folder
by repeatedly selecting non-hidden subfolders.

According to the results from [33], such queries are not express-
ible in XPath 1.0. This query, however, is expressible in XPath 2.0
but not very efficiently. E.g.,
//file except //folder[@hidden=‘true’]//file

Such queries can be expressed much more elegantly in XSeq
(and also in Regular XPath):

QUERY 22 (φ QUERY IN XSEQ).
(/folder[@hidden = ‘false’])*/file

Genetics. Haemophilia is one of the most common recessive
X-chromosome disorders. In genetic testing and counseling, if the
fetus has inherited the gene from an affected grandparent the risk to
the fetus is 50% [1]. Therefore, the inheritance risk for a person can
be estimated by tracing the history of haemophilia among its even-
distance ancestors, i.e. its grandparents, its grand-parents’ grand-
parents, and so on.

EXAMPLE 23. Given an ancestry XML which contains the his-
tory of haemophilia in the family, identify all family members who
are at even-distance from an affected member, and hence, at risk.



This query cannot be easily expressed without Kleene-* [8], but
is expressible in XSeq:

QUERY 24 (DESCENDANTS OF EVEN-DISTANCE FROM A NODE).
return $Z@Cname
from // $X[@haemophilia = ‘true’] (/$Y /$Z)*

Queries 22 and 24 are not expressible in XPath 1.0, are express-
ible in XPath 2.0 but not efficiently, and are easily expressible in
Regular XPath and XSeq.

Temporal Queries.
Expressing temporal queries represents a long-standing research

interest. A number of language extentions and ad-hoc solutions
have been proposed. However, XSeq is able to express a large range
of temporal queries. We will take the famous temporal aggregate
named RISING, introduced by TSQL2 [28], as an example. Below
is the DTD of a temporal employee XML. Each employee record
is ordered by the start time of the record (tstart):

<!DOCTYPE employees [
<!ELEMENT employees (employee*)>
<!ELEMENT employee (name, salary, dept)>
<!ATTLIST employee id CDATA #REQUIRED>
<!ATTLIST employee tstart CDATA #REQUIRED>
<!ATTLIST employee tend CDATA #IMPLIED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT salary (#PCDATA)>
<!ELEMENT dept (#PCDATA)> ]>

EXAMPLE 25 (RISING). What is the maximum time range
during which an employee’s salary is rising?

QUERY 26.
return max(last($X) @tend - first($X) @tstart)
from // $Z* (\$X)*
where tag($X) = ‘employee’
and $X/salary/text() > prev($X)/salary/text()
and $X@tstart <= prev($X)@tend

partition by //employee@id

4. XSEQ OPTIMIZATION
The choice of operators in XSeq is heavily influenced by whether

they can be efficiently evaluated or not. Our criterion for efficiency
of an XSeq operator is whether it can be mapped to a Visibly Push-
down Automaton (VPA). The rationale behind choosing VPA as
the underlying query execution model is two-fold. First, XSeq
is mainly designed for complex patterns and patterns can be intu-
itively described as transitions in an automaton: fortunately, VPAs
are expressive enough to capture all the complex patterns that can
be expressed in XSeq. Secondly, VPAs retain many attractive com-
putational properties of finite state automata on words [2]. In fact,
by translation into VPAs, we can exploit several existing algorithms
for streaming evaluation [19] and optimization of VPAs [21]. For
unfamiliar readers, we have provided a brief background on VPAs
in Appendix B.

In Section 4.1, we describe a simplified version of our transla-
tion from XSeq queries into equivalent VPAs10 which can faith-
fully capture the same pattern in the input. Then, in Sections 4.2
and 4.3, we present several static (compile-time) and run-time op-
timizations of VPAs in our XSeq implementation. In Section 6 we
study the effectiveness of these optimizations in practice.

10In this paper, we do not formally define ‘equivalence’. Informally,
when an XSeq query and a VPA are equivalent, every portion of
the input XML that produces an output result in the fomer, will be
accepted by the latter and vice versa.

4.1 Efficient Query Plans via VPA
As described above, compiling XSeq queries into efficient query

plans starts by constructing an equivalent VPA for the given query.
We construct this VPA by an iterative bottom-up process where
we start from a single-state (trivial) VPA and at each Step of the
XSeq query, we compose the original VPA with a new VPA that
is equivalent with the current Step. Next, we show how different
axes can be mapped into equivalent VPAs. Lastly, we show how
other constructs of the XSeq query can be handled as well.

In the following, whenever connecting the accepting state(s) of
a VPA to the starting state(s) of the previous VPA, note that VPAs
are closed under concatenation, and thus, the resulting automaton
is still a valid VPA.

Handling /: The /X axis is equivalent to a VPA with two states E
and O where E is the starting state where we invoke the stack on
open and closed tags accordingly (see Appendix B for the rules
regarding stack manipulation in a VPA), and transition to the same
state on all input symbols as long as the consumed input in E is
well-nested. Upon seeing the appropriate open tag (e.g., 〈X〉) we
non-deterministically transition to our accepting state O.

Handling @: In the presence of the attribute specifier, @, we add
a new state A as the new accepting state which will be transitioned
to from our previous accepting state upon seeing any attribute. We
remain in state A as long as the input is another attribute, i.e. to
account for multiple attributes of the same open tag.

Figure 4(a) demonstrates the VPA for /son@Bdate. Figure 5
shows the intuitive correspondence of this VPA with the navigation
of the XML document, where:

• E matches zero or more (well-nested) subtrees in the pre-
order traversal of the XML tree,

• O matches the open tag for son, i.e. 〈son〉,

• A matches the attribute list of 〈son〉, namely O.

To see the correspondence between this VPA and the XSeq query,
note that to find all the direct sons of a daughter, we navigate
through the pre-order traversal of the sub-tree under each daugh-
ter node, then non-deterministically skip an arbitrary number of
her children (i.e., E∗) until visiting one of her children who is a
son (i.e., O), and then finally visit all the tokens that correspond to
his son’s attributes, i.e. A∗. The non-determinism assures that we
eventually visit all the sons under each daughter.

Handling ()*: Kleene-* expressions in XSeq, such as (/son)∗, are
handled by first constructing a VPA for the part inside the parenthe-
ses, say V1, then adding an ε-transition from the accepting state of
V1 back to its starting state. Since VPAs are closed under Kleene-*,
the resulting automaton will still be a VPA.

Handling //: The // axis can also be easily defined as a Kleene-
* of the / operator. For instance, the //daughter construct is
equivalent to (/X)∗/daughter, where X is a wild card, i.e. matches
any open tag. Figure 5 shows the correspondence between the VPA
states for // and the familiar traversal of the XML document.

Handling siblings: Let V1 be the VPA that recognizes the query
up to node D. The VPA for recognizing the sibling of D, say node
S, is constructed by adding four new states (E1, C, E2 and O) to V1,
where:

• We transition from the accepting state(s) of V1 to E1. E1

invokes the stack on open and closed tags accordingly, and
transitions to itself on all input symbols as long as the con-
sumed input in E1 is well-nested.
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Figure 4: VPAs for (a) /son@Bdate, (b) /daughter son, (c) //book[year = 2000], and (d) //book[@title = ‘mytitle′]

Figure 5: Visual correspondence of VPA states and XSeq axes.

• Upon seeing a close tag of D, we non-deterministically tran-
sition from E1 to C.

• We transition from C to E2 upon any input. Similar to E1,
E2 invokes the stack on open and closed tags accordingly,
and transitions to itself on all input symbols as long as the
consumed input in E2 is well-nested.

• Upon seeing an open tag for the sibling, i.e. 〈S〉, we non-
deterministically transition from E2 to state Owhich is marked
as the accepting state of the new VPA.

Figure 4(b) shows the VPA for query “/daughter son”. The
intuition behind this construction is that E1 skips all possible sub-
trees of the last daughter non-deterministically, while E2 non-
deterministically skips all other siblings of the current daughter
until it reaches its sibling of type son.

Handling \ : The construct \X is handled according to the last axis
that has appeared before it. Let V1 be the VPA for the XSeq query
up to \X. When the previous axis is vertical (e.g. / or //), then we
only need to add one new state to the V1, say O, where from all the
accepting states of V1 we transition to state O upon seeing any open
tag of X. The new accepting state will be O.

When the axis before \X is horizontal (e.g. siblings), we add
three new states to V1, say E, C and O, where:

• We transition from the accepting state(s) of V1 to E. At E, we
invoke the stack upon open and closed tags accordingly, and
transition to E on all input symbols as long as the consumed
input in E is well-nested.

• We non-deterministically transition from E to C upon seeing
a close tag of the last (horizontal) axis.

• We transition from C to O upon an open tag for X and fail
otherwise. O will be the new accepting state of the VPA.

Handling backward axes. Backward axes are translated by us-
ing one variable per axis but expressing all (exponential) combi-
nations in which they appear as predicates (handling predicates is
described next). For instance, an XSeq query //son[@Cname =
‘John‘]///son[@Cname = ‘Bob‘]/ancestor::son[@Cname =
‘Alex‘] is equivalent to a VPA with three states X, Y and Z (as well
as intermediary states to capture the well-nestedness, similar to for-
ward axes above) with the condition that the name of Y is ‘Bob’ and
either the name of X is ‘John’ and the name of Z is ‘Alex’ or X is
‘Alex’ and Z is ‘John’, i.e. the different orders in which they could
appear in the pre-order traversal of the XML tree.
Handling predicates. Comparisons between the values of differ-
ent nodes are deferred to the first state where both values have been
seen. This requires that we have access to the value of a node even
we are not at its corresponding state. However, previous input sym-
bols in a VPA can only be remembered in one of the two ways. 1)
Retrieving the top symbol on the stack. However, this operation in
a VPA is only allowed when the current input is a close tag, and
2) Encoding a finite amount of history in the state itself, i.e. every
state represents one out of finite number of cases in the past.

In our real implementation of XSeq, we simply use a few vari-
ables (a.k.a. registers) at each state, in order to remember the latest
values of the operands in the predicate(s) that need to be evaluated
at that state. However, in our complexity analysis in Section 5, we
use the abstract form of a VPA, namely where a state is duplicated
as many as there are unique values for its operands.

Handling Partition By Since the pattern in the ‘partition by’ clause
is the prefix of the pattern in the ‘from’ clause, the partition by
clause can be simply treated as a new predicate on the attribute
which is partitioned by. For example, when translating Query 26
into a VPA, let A1, · · · , An be all the states that represent the at-
tribute(s) of any employee node. Then, we can implement the par-
tition by clause by simply checking at every state Ai that the current
value of the ID attribute is equal to the last value of the ID attribute
seen at Aj state, for all 1 ≤ j ≤ n.

Handling other constructs Union, intersection (equivalently, node
tests) and negation can all be implemented with their corresponding



operations on the intermediary VPAs, as VPAs are closed under
union, intersection and complementation. The translations are thus
straightforward (omitted here for space constraints).

4.2 Static VPA Optimization
Cutting the inferrable prefix. When the schema (e.g. DTD ) is
available, we can always remove the longest prefix of the pattern
as long as (i) the prefix has not been referenced in the return or
the where clause, and (ii) the omitted prefix can be always inferred
for the remaining suffix. For example, consider the following XSeq
query, defined over the SigmodRecord dataset11:
//issue/articles/authors/author[text()=‘Alan Turing’]
This XSeq query generates a VPA with many states, i.e. 3 states
for every step. However, based on the DTD, we infer that author
nodes always have the same prefix, i.e. issue/articles/authors/.
Thus, we remove the part of the VPA that corresponds to this com-
mon prefix. Due to the sequential nature of VPAs, such simpli-
fications can greatly improve the efficiency by reducing a global
pattern search to a more local one.

Reducing non-determinism from the transition table. Our al-
gorithm for translating XSeq queries produces VPAs that are typ-
ically non-deterministic. Reducing the degree of non-determinism
always improves the execution efficiency by avoiding many unnec-
essary backtracks. In general, full determinization of a VPA is an
expensive process, which can increase the number of states from
O(n) to O(2n

2

) [2].
However, there are special cases that the degree of non-determinism

can be reduced without incurring an exponential cost in memory.
Since self-loops in the transition table are the main source of non-
determinism, the XSeq’s compile-time optimizer removes such edges
from the generated VPA, whenever possible. For instance, consider
the XSeq query //book[year = 2000] and its corresponding VPA
in Figure 4(c). If according to the schema, year nodes cannot con-
tain any subelements, the optimizer will remove the self-loop from
E2’s transition table (we remove E2 entirely, if it lacks any other
transitions). Also, if a node, say year, does not have any attributes,
the optimizer will remove its corresponding state, here Ay.

Finally, whenever self-loops can only occur a fixed number of
times, they are removed by duplicating their corresponding states
accordingly. For instance, if we know that book nodes only con-
tain two subelements, say title followed by year, the optimizer
replaces E1 with 3 new states (without any self-loop) to explicitly
skip the title’s open, text and closed tags. The latter expression
(E1∧3) is executed more efficiently as it will be deterministic.

Reducing non-determinism from the states. In order to skip all
the intermediate subelements, the automatically generated VPAs
contain several states with incoming and outgoing ε-transitions. In
the presence of the XML schema, many of such states become un-
necessary and can be safely removed before evaluating the VPA on
the input. We have several rules for such safe omissions. Here, we
only provide one example.

Consider the VPA in Figure 4(d) where the states Ob, Ab and Cb

match with 〈book〉, its attributes and 〈/book〉, respectively. If we
know that book nodes cannot contain another book, we can remove
the state E.

4.3 Run-time VPA Optimization
In the previous sections, we demonstrated how XSeq queries can

be translated into equivalent VPAs and presented several techniques
for reducing the degree of non-determinism in our VPAs. One of

11
http://www.cs.washington.edu/research/xmldatasets/

the main advantages of using VPAs as the underlying execution
model is that we can take advantage of the rich literature on effi-
cient evaluation of VPAs. In particular we use the one-pass evalua-
tion of the VPAs as described in [19] and use the pattern matching
optimization of VPAs as described in [21].

In a straightforward evaluation of a VPA over a data stream,
one would consider the prefix starting from every element of the
stream as a new input to the VPA. In other words, upon accep-
tance or rejection of every input, the immediate next starting posi-
tion would be considered. However, for word automata, it is well-
known that this naive backtracking strategy can be easily avoided
by applying pattern matching techniques such as the KMP [15] al-
gorithm. Recently, a similar pattern matching technique was de-
veloped for VPAs, known as VPSearch [21]. Similar to word au-
tomata, VPSearch avoids many unnecessary backtracks and there-
fore, reduces the number of VPA evaluations. We have imple-
mented VPSearch and its run-time caching techniques in our Java
implementation of XSeq. Further details on streaming evaluation
of VPAs and the VPSearch algorithm can be found in [19] and
[21], respectively. Due to the excellent VPA execution performance
achieved by K*SQL [21], we use the same run-time engine for
XSeq queries once they are compiled into a VPA (see Section 7).

5. EXPRESSIVENESS AND COMPLEXITY
Our main focus in this paper is to introduce XSeq through intu-

itive examples from important complex event processing domains.
We have also provided the high-level idea of how XSeq queries
can be optimized and translated into equivalent VPAs. For space
limitations, we leave the formal treatment of XSeq to our techni-
cal report [23], including the formal semantics and rigorous details
of the translation into VPAs. Therefore, in this section we briefly
summarize our results on the expressiveness of XSeq, and its com-
plexity for query evaluation and query containment—three funda-
mental questions for any query language.

The full language of XSeq is too rich for a rigorous logical anal-
ysis, and thus we focus on its navigational features by exclud-
ing arithmetics, string manipulations and aggregates. To allow for
memory-efficient streaming algorithms we also disallow 6= opera-
tor in our analysis. Thus, we obtain a more concise language, called
Core XSeq12.

In the following, Σ is the alphabet (i.e., set of unique tokens
in the XML document), FO is the first order logic, FO∗ is the
extension of FO with a transitive closure operator that applies to
formulas with exactly two free variables, FO(MTC) is first-order
logic extended with the monadic transitive closure operator [34],
and MSOµ is monadic second order logic over words augmented
with a binary matching relation µ [2].

THEOREM 1 (EXPRESSIVENESS). Core XSeq ≡ MSOµ:
1. For every query in Core XSeq of sizeO(m) there is an equiv-

alent VPA with O(m2 · |Σ|m
2

· 2m) states.

2. There are linear-time encodings of Visibly Pushdown Expres-
sions (VPE) into Core XSeq queries.

PROOF SKETCH. In Section 4.1, we have provided the linear-
time mapping from XSeq to VPA with predicates. To get rid of the
predicates, we need to replicate each state for every value that it
needs to remember for evaluating those predicates. We have O(m)
predicates, for each we need to remember at most |Σ|2 different
values, by remembering the min or max of each operand (e.g. when

12Similar approaches in analyzing XPath 1.0 and 2.0, has led to sub-
languages Core XPath 1.0[33] and Core XPath 2.0[32].



the predicate is T@price < S@price we only need to remember
the max of the first and the min of the second operand). A careful
case-analysis leads to O(m2|Σ|m

2

2m) states in the VPA without
any predicates.

To prove that all MSOµ formulas can be expressed in XSeq, we
encode the VPEs [26] as XSeq queries, similar to the encoding used
in [21], except that in XSeq, since negation in the path expression
is not allowed, we negate the predicates. (Visibly Pushdown Ex-
pressions (VPE) [26] are generalizations of regular expressions that
are equivalent to Visibly Pushdown Languages (VPLs) and thus, to
VPAs and MSOµ (MSO over nested words) [2].)

The expressiveness of the previous languages are as follows:

Core XPath 1.0 (FO≡ Core XPath 2.0 ≡ Conditional XPath (
Regular XPath (? FO∗ ≡ Regular XPath≈ (? FO(MTC) ≡

Regular XPath(W) ( µRegular XPath≡Core K*SQL≡MSO≡Core XSeq

(for proofs, see their respective papers).
Thus, for every query written in any of the languages above there

exists an equivalent Core XSeq query, and except for µRegular
XPath and Core K*SQL, Core XSeq is strictly more expressive
than the rest.

LEMMA 2 (QUERY EVALUATION). Data and query complex-
ities for Core XSeq’s query evaluation are PTIME and EXPTIME,
respectively.

PROOF SKETCH. By mapping Core XSeq queries into VPAs,
the query evaluation of the former corresponds to the language
membership decision of the latter. Using the membership algorithm
provided in [19], we only need space O(s4 · log s ·d+s4 ·n · log n)
where n is the length of the input, d is the depth of the XML doc-
ument (thus, d < n), and s is the number of the states in the VPA.
PTIME data complexity comes from n and the EXPTIME query
complexity comes from s which is exponential in the query size
(see Theorem 1).

LEMMA 3 (QUERY CONTAINMENT). Query containment for
Core XSeq is decidable and is 2-EXPTIME-complete.

PROOF SKETCH. Once two Core XSeq queries are translated
into VPAs, their query containment problem corresponds to the
language inclusion problem for their VPAs, say M1 and M2. To
check L(M1) ⊆ L(M2), we check if L(M1) ∩ L(M2) = ∅.
Given M1 with s1 states and M2 with s2 states, we can deter-
minize [30] and complement the latter to get a VPA for L(M2)

of size O(2s2
2

). L(M1) ∩ L(M2) is then of size O(s1 · 2s2
2

), and
emptiness check is polynomial (cubic) in the size of this automaton.
Since, s1 and s2 are themselves exponential in the size of their Core
XSeq queries, membership in 2-EXPTIME holds. For completeness
of the 2-EXPTIME, note that XSeq syntactically subsumes Regular
XPath(∗,∩) for which the query containment has been shown to be
2-EXPTIME-complete [8].

6. EXPERIMENTS
In this section we study the amenability of XSeq language to effi-

cient execution. Our implementation of the XSeq language consists
of a parser, VPA generator, a compile-time optimizer, and the VPA
evaluation and optimization run-time, all coded in Java. We first
evaluate the effectiveness of our different compile-time optimiza-
tion heuristics in isolation. We then compare our XSeq system with
the state-of-the-art XML engines for (i) complex sequence queries,
(ii) Regular XPath queries, and (iii) simple XPath queries. While
these systems are designed for general XML applications, we show

Figure 6: Contribution of different optimization techniques.

that XSeq is far more suited for CEP applications. In fact, XSeq
achieves up to two orders of magnitude out-performance on (i) and
(ii), and competitive performance on (iii). Finally, we study the
overall performance, throughput and memory usage of our system
under different classes of patterns and queries.

All the experiments were conducted on a 1.6GHz Intel Quad-
Core Xeon E5310 Processor running Ubuntu 6.06, with 4GB of
RAM. We have used several real-world datasets including NAS-
DAQ stocks that contains more than 7.6M records13 since 1970,
and also the Treebank dataset14 that contains English sentences
from Wall Street Journal and has with a deep recursive structure
(max-depth of 36 and avg-depth of 8). We have also used XMark [27]
which is well-known benchmark for XML systems and provides
both data and queries. Due to lack of space, for each experiment
we only report the results on one dataset. The results and main
observations, however, were similar across different datasets.

6.1 Effectiveness of Different Optimizations
In this section, we evaluate the effectiveness of the different compile-

time optimizations from Section 4.2, by measuring their individual
contribution to the overall performance15. For this purpose, we ex-
ecuted the X2 query from XMark [27] over a wide range of input
sizes (generated by XMark, from 50KB to 5MB). The results of
this experiment are reported in Figure 6, where we use the fol-
lowing acronyms to refer to different optimization heuristics (see
Section 4.2):

Opt-1 Cutting the inferrable prefix
Opt-2 Reducing non-determinism from the pattern clause
Opt-3 Reducing non-determinism from the where clause

In this graph, we have also included the naive and combined
(Opt-All) versions, namely when, respectively, none and all of the
compile-time optimizations are applied. The first observation is
that combining all the optimization techniques delivers a dramatic
improvement in performance (1-2 orders of magnitude, over the
naive one).

Cutting the inferable prefix, Opt-1, leads to fewer states in the
final VPA. Like other types of automata, fewer states can signifi-
cantly reduce the overall degree of non-determinism. The second

13
http://infochimps.org/dataset/stocks_yahoo_NASDAQ

14
http://www.cs.washington.edu/research/xmldatasets/www/

repository.html
15The effectiveness of the VPA evaluation and optimization tech-
niques have been previously validated in their respective pa-
pers [19, 21].
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Figure 7: XSeq vs. XPath/XQuery engines: (a) ‘V’-pattern query over Nasdaq stocks, (b) Sequence queries over Nasdaq stocks, (c)
Regular XPath queries over XMark data, and (d) conventional XPath queries from XMark.

reason behind the key role of Opt-1 in the overall performance is
that it reduces non-determinism from the beginning of the pattern:
this is particularly important because non-determinism in the start-
ing states of a VPA is usually disastrous as it prevents the VPA
from the early detection of unpromising traces of the input. In
contrary, reducing non-determinism in the pattern and the where

clause (Opt-2, Opt-3) has a much more local effect. In other words,
the latter techniques only remove the non-determinism from a sin-
gle state or edge in the automata, while the rest of the automata may
still suffer from non-determinism. However local, Opt-2 and Opt-
3 can still improve the overall performance when combined with
Opt-1. This is because of the extra information that they learn from
the DTD file.

6.2 Sequence Queries vs. XPath Engines
We compare our system against two16 of the fastest academic and

industrial engines: MonetDB/XQuery[6] and Zorba [4]. First, we
used several sequence queries on Nasdaq transactions (embedded
in XML tags), including the ‘V’-shape pattern (defined in Exam-
ple 15 and Query 16). By searching for half of a ‘V’ pattern, we
defined another query to find ‘decreasing stocks’. Also, by defining
two occurrences of a ‘V’ pattern, we defined what is known as the
‘W’-shape pattern 17. We refer to these queries as S1, S2 and S3.
We also defined several Regular XPath queries over the treebank
dataset, named R1, R2, R3 and R4 where,
R1: /FILE/EMPTY(/VP)*/NP,
R2: /FILE(/EMPTY)*/S,
R3: /FILE(/EMPTY)*(/S)*/VP,
R4: /FILE(/EMPTY)*/S(/VP)*/NP

Sequence queries. For expressing these queries (namely S1, S2
and S3) in XQuery, we had to mimic the notion of ‘immediately
following sibling’, i.e. by checking that for each pair of siblings
in the sequence, there are no other nodes in between. The XQuery
versions of S2 has been given in Figure 1. Due to the similarity of
S1 and S3 to S2 here we omit their XQuery version (roughly speak-
ing, S1 and S3 consist of, respectively, two and four repetitions of
S2).

Not only were sequence queries difficult to express in XPath/
XQuery but were also extremely inefficient to run. For instance,
for the queries at hand, neither of Zorba or MonetDB could han-
dle any input data larger than 7KB. The processing times of these
sequence queries, over an input size of 7KB, are reported in Fig-
ure 7(b). Note that the Y-axis is in log-scale: the same sequence

16Since the sequence queries of this experiment are not expressible
in XPath, we could not use the XSQ [25] engine as it does not
supports XQuery.

17‘W’-pattern (a.k.a. double-bottom) is a well-known query in stock
analysis.

queries written in XSeq run between 1-3 orders of magnitude faster
than their XPath/XQuery counterparts do on two of the fastest XML
engines. Figure 7(a) shows that gap between XSeq and the other
two engines grows with the input size. This is due to the linear-
time query processing of XSeq which, in turn, is due to the linear-
time algorithm for evaluation of VPAs along with the backtrack-
ing optimizations when the VPA rejects an input [21]. Zorba and
MonetDB’s processing time for these sequence queries are at least
quadratic, due to the nested nature of the queries.

In summary, the optimized XSeq queries run significantly (1-3
orders of magnitude) faster than their equivalent counterparts that
are expressed in XQuery. This result indicates that traditional XML
languages such as XPath and XQuery (although theoretically ex-
pressive enough), due to their lack of explicit constructs for se-
quencing, are not amenable to effective optimization of complex
queries that involve repetition, sequencing, Kleene-*, etc.

Regular XPath queries. As mentioned in Section 1, despite the
many benefits and applications of Regular XPath, currently there
are no implementations for this language (to our best knowledge).
One of the advantages of XSeq is that it can be also seen as the
first implementation of Regular XPath, as the latter is a subset of
the former. In order to study the performance of XSeq for Regular
XPath queries (e.g., R1, · · · , R4) we compared our system with the
only other alternative, namely implementing the Kleene-* operator
as a higher-order user-defined functions (UDF) in XQuery. Since
MonetDB does not support such UDFs, we used another engine,
namely Saxon [14]. The results for 464KB of treebank dataset are
presented in Figure 7(c) as Zorba, again, could not handle larger
input size. Thus, for Regular XPath queries, similarly to sequence
queries, XSeq proves to be 1-2 orders of magnitude faster than
Zorba, and between 2-6 times faster than Saxon. Also, note that the
relative advantage of Saxon over Zorba is only due to the fact that
Saxon loads the entire input file in memory and then performs an
in-memory processing of the query [14]. However, this approach is
not feasible for streaming or large XML documents18.

6.3 Conventional Queries vs. XPath Engines
As shown in the previous section, complex sequence queries

written in XSeq can be executed dramatically faster (from 0.5 to
3 orders of magnitude) than even the fastest of XPath/ XQuery en-
gines. In this section, we continue our comparison of XSeq and
native XPath engines by considering simpler XPath queries, i.e.
queries without sequencing and Kleene-*. For this purpose, we
used the XMark queries which in Figure 7(d) are referred to as X1,

18Due to lack of space, we omit the results for the case when the
input size cannot fit in the memory. Briefly, unlike XSeq, Saxon
results in using the disk swap, and thus, suffers from a poor perfor-
mance.
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Figure 8: Effect of different types of XSeq queries on total execution time (a) and memory usage (b).

X2, and so on19. Once again, we executed these queries on Mon-
etDB, Zorba (as state-of-the-art XPath/XQuery engines) and XSQ
(as state-of-the-art streaming XPath engine) as well as on our XSeq
engine. In this experiment, the XMark data size was 57MB. Note
that both Zorba and MonetDB are implemented in C/C++ while
XSeq is coded in Java, which generally accounts for an overhead
factor of 2X in a fair comparison with C/C++ implementations.
The results are summarized in Figure 7(d). The XSeq queries were
consistently competitive compared to all the three state-of-the-art
XPath/XQuery engines. XSeq is faster than XSQ for most of the
tested queries. For some queries, e.g. X2 and X4, XSeq is even 2-
4 times faster. Even compared with MonetDB and Zorba, XSeq is
giving surprisingly competitive performance, and for some queries,
e.g. X4, were even faster. Given that XSeq is coded in Java, this is
an outstanding result for XSeq. For instance, once the java factor is
taken into account, the only XMark query that runs slower on the
XSeq engine is X15, while the rest of the queries will be considered
about 2X faster than both MonetDB and Zorba.

In summary, once the maturity of the research on XPath/ XQuery
optimization is taken into account, our natural extension of XPath
that relies on a simple VPA-based optimization seems very promis-
ing: XSeq achieves better or comparable performance on simple
queries, and is dramatically faster for more involved queries.

6.4 Throughput for Different Types of Queries
To study the performance of different types of queries in XSeq,

we selected four representative queries with different characteris-
tics which, based on our experiments, covered a wide range of dif-
ferent classes of XML queries. To facilitate the discussion, below
we label the XML patterns as ‘flat’, ‘deep’, ‘recursive’ and ‘mono-
tone’:

Q1: flat /site/people/person[@id = ‘person0’]/name/text()
Q2: deep /site/closed_auctions/closed_auction/annotation/

description/parlist/listitem/parlist/listitem/text/
emph/keyword/text()

Q3: recursive (parlist/listitem)*
Q4: monotonic //closed_auctions/

(\X[tag(X)=‘closed_auction’ and
X@price < prev(X)@price])*

We executed all these queries on XMark’s dataset. Also, the first
two queries (Q1 and Q2) are directly from XMark benchmark (re-
ferred to as Q1 and Q15 in [27]). We refer to them as ‘flat’ and
‘deep’ queries, respectively, due to their few and many axes. In
XMark’s dataset, the parlist and listitem nodes can contain
one another, which when combined with the Kleene-*, is the reason
why we have named Q3 ‘recursive’. The Q4 query, called ‘mono-
tonic’, searches for all sequences of consecutive closed auctions

19Due to space limit and similarity of the result , here we only report
7 out of the 20 XMark queries.

where the price is strictly decreasing. These queries reveal inter-
esting facts about the nature of XSeq language and provide insight
on the types of XSeq queries that are more amenable to efficient
execution under the VPA optimizations.

The query processing time is reported in Figure 8(a). The first
important observation is that XSeq has allowed for linear scalabil-
ity in terms of processing time, regardless of the query type. This
has enabled our XSeq engine to steadily maintain an impressive
throughput of 200,000-700,000 tuples/sec, or equivalently, 8-31
MB/sec even when facing an input size of 450MB. This is shown
in Figures 9(a) and 9(b) in which the X-axes are drawn in log-scale.
Interestingly, the throughput gradually improves when the window
size grows from 200K to 1.1M tuples. This is mainly due to the
amortized cost of VPA construction and compilation, and other run-
time optimizations such as backtrack matrices [21] that need to be
calculated only once.

Among these queries, the best performance is delivered for Q3
and Q4. This is because they consist of only two XPath steps,
and therefore, once translated into VPA, result in fewer states. Q1
comes next, as it contains more steps and thus, a longer pattern
clause. Q2 achieves the worst performance. This is again expected,
because Q2’s deep structure contains many tag names which lead
to more states in the final VPA. In summary, this experiment shows
that with the help of the compile-time and run-time optimizations,
XSeq queries enjoy a linear-time processing. Moreover, the fewer
axes (i.e. steps) involved in the query, the better the performance.

7. PREVIOUS WORK
XML Engines. Given the large amount of previous work on

supporting XPath/XQuery on stored and streaming data, we only
provide a short and incomplete overview, focusing on the stream-
ing ones. Several XPath streaming engines have been proposed
over the years, including TwigM [9], XSQ [25], and SPEX [24];
also the processing of regular expressions, which are similar to the
XPath queries of XSQ, is discussed in [24] and [5]. XAOS [5] is an
XPath processor for XML streams that also supports reverse axes
(parent and ancestor), while support for predicates and wildcards
is discussed in [13]. Finally, support for XQuery queries on very
small XML messages (<100KB) is discussed in [11].

Language extensions. Extending the expressive power of XPath
has been the focus of much research [31, 33, 32, 34, 20]. For in-
stance, Core XPath 2.0 [32], extended Core XPath 1.0 with path in-
tersection, complementation, and quantified variables. Conditional
XPath [20], extended XPath with ‘until’ operators, while the inclu-
sion of a least fixed point operator was proposed in [31]. More
modest extensions, that better preserved the intuitive clarity and
simplicity of Core XPath 1.0, included Regular XPath [31], Reg-
ular XPath≈ [33] and Regular XPath(W) [34]. These allowed ex-



(a) (b)

Figure 9: The effect of different types of queries on (a) throughput in terms of tuples processed, and (b) throughput in terms of
datasize.

pressions such as /a(/b/c)∗/d, where a Kleene-* expression A∗,
was defined as the infinite union · ∪A∪ (A/A)∪ (A/A/A)∪ · · ·
Even for these more modest extensions, however, efficient imple-
mentation remained an issue: in 2006, the following open problem
was declared as a challenge for the field [31]: Efficient algorithms
for computing the transitive closure of XPath path expressions.

VPA. Visibly Pushdown Automata (VPA) have been recently
proposed for checking Monadic Second Order (MSO) formulas
over dual-structured data such as XML [2, 3], and have led to new
streaming algorithms for XML processing [19, 26]. The recently
proposed query language K*SQL [22, 21] used VPAs to achieve
good performance and expressivity levels needed to query both re-
lational and XML streams. However, while very natural for re-
lational data, K*SQL is quite procedural and verbose for XML,
whereby the equivalents of simple XPath queries are long and com-
plex K*SQL statements. At the VPA implementation level, how-
ever, the same VPA optimization techniques support both XSeq and
K*SQL.

8. CONCLUSION AND FUTURE WORK
We have described the design and implementation of XSeq, a

query language for XML streams that adds powerful extensions to
XPath while remaining very amenable to optimization and efficient
implementation. We studied the power and efficiency of XSeq both
in theory and in practice, and proved that XSeq subsumes Regular
XPath and its dialects, and hence, provides the first implementation
of these languages as well. Then, we showed that well-known com-
plex queries from diverse applications, can be easily expressed in
XSeq, whereas they are difficult or impossible to express in XPath
and its dialects. The design and implementation of XSeq leveraged
recent advances in VPAs and their online evaluation and optimiza-
tion techniques.

Inasmuch as XPath provides the kernel of several query lan-
guages, such as XQuery, we expect that these languages will also
benefit from the extensions and implementation techniques described
in this paper. In analogy to YFilter [10], where thousands of XPath
expressions were merged into one NFA, the fact that VPAs are
closed under union creates important opportunities for concurrent
execution of numerous number of XSeq queries. Another line of
future research is to use XSeq in applications with other examples
of visibly pushdown words, such as software analysis, JSON files,
and RNA sequences.
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APPENDIX
A. MORE ON XSEQ’S SYNTAX

Conditions. In XSeq, a Condition can be any predicate which
is a boolean combination of atomic formulas. An atomic formula
is a binary operator applied to two operands. A binary operator
is one of =, 6=, <, >, ≤, ≥. An operand is any algebraic combi-
nation (using +, -, etc.) of string or numerical constants and terms
of the form X@attr where attr is an attribute and $X is either an
OutBase or a scalar function applied to a $variable

Negation. XSeq does not provide explicit constructs for path
negation (e.g. except in XPath 2.0). The reason is that by forc-
ing the programmer to simulate the negation with other constructs
the resulting query is often more amenable to optimization. For
instance, the query of Example 4 could be expressed in XPath 2.0
using their except operator as:

//son[@Bplace=‘NY’]//son[@Bplace=‘NY’]@Cname except
//son[@Bplace=‘NY’]//son[@Bplace != ‘LA’]//son[@Bplace=‘NY’

]@Cname

However, as shown in Query 5, this query can be expressed in XSeq
without using the negation.

B. BACKGROUND ON VPA
Informally, visibly pushdown words and their closely related mod-

els, namely nested words [3], model a sequence of letters (i.e., a
“normal” word) together with hierarchical edges connecting certain
positions along the word. The edges are properly nested (i.e., edges
do not cross), but some edges can be pending. Visibly pushdown
words generalize normal words (all positions are internal-data) and

ordered trees. Also, natural operations (such as concatenation, pre-
fix, suffix) on words are easily generalized to nested words. Visibly
pushdown words have found applications in many areas, ranging
from program analysis to XML, and even representations of ge-
nomic data [3].

Visibly Pushdown Automata (VPA) are a natural generalization
of finite state automata to visibly pushdown words. Visibly push-
down languages (VPLs) consist of languages accepted by VPAs.
While VPLs enjoy higher expressiveness and succinctness com-
pared to word and tree automata, their decision complexity and
closure properties are analogous to the corresponding word and tree
special cases. For example, VPLs are closed under union, intersec-
tion, complementation, concatenation, and Kleene-* [2]; determin-
istic VPAs are as expressive as their non-deterministic counterparts;
and membership, emptiness, language inclusion and equivalence
are all decidable [2, 3]. Next, we briefly recall the formal definition
of a VPA. Readers are referred to the seminal paper [2] for more
details.

Let Σ be the finite input alphabet, and let Σ = Σc ∪ Σr ∪ Σi
be a partition of Σ. The intuition behind the partition is: Σc is
the finite set of call (push) symbols, Σr is the finite set of return
(pop) symbols, and Σi is the finite set of internal symbols. Visibly
pushdown automata are formally defined as follows:

DEFINITION 1. A visibly pushdown automaton (VPA) M over
S is a tuple (Q,Q0,Γ,∆;F ) whereQ is a finite set of states,Q0 ⊆
Q is a set of initial states, F ⊆ Q is a set of final states, Γ is a finite
stack alphabet with a special symbol ⊥ (representing the bottom-
of-stack), and ∆ = ∆c ∪∆r ∪∆i is the transition relation, where
∆c ⊆ Q × Σc × Q × (Γ\{⊥}),∆r ⊆ Q × Σr × Γ × Q, and
∆i ⊆ Q× Σi ×Q.

If (q, c, q′, γ) ∈ ∆c, where c ∈ Σc and γ 6= ⊥, there is a push-
transition from q on input c where on reading c, γ is pushed onto
the stack and the control changes from state q to q′; we denote such

a transition by q
c/+γ−−−→ q′. Similarly, if (q, r, γ, q′), there is a pop-

transition from q on input r where γ is read from the top of the
stack and popped (if the top of the stack is ⊥, then it is read but
not popped), and the control state changes from q to q′; we denote

such a transition q
r/−γ−−−→ q′. If (q, i, q′) ∈ ∆i, there is an internal-

transition from q on input i where on reading i, the state changes
from q to q′; we denote such a transition by q i−→ q′. Note that
there are no stack operations on internal transitions. We write St
for the set of stacks {w⊥|w ∈ (Γ\{⊥})∗}. A configuration is a
pair (q, σ) of q ∈ Q and σ ∈ St. The transition function of a VPA
can be used to define how the configuration of the machine changes
in a single step: we say (q, σ)

a−→ (q′, σ′) if one of the following
conditions holds:

1. If a ∈ Σc then there exists γ ∈ Γ such that q
a/+γ−−−→ q′ and

σ′ = γ · σ

2. If a ∈ Σr , then there exists γ ∈ Γ such that q
a/−γ−−−→ q′ and

either σ = γ · σ′, or γ = ⊥ and σ = σ′ = ⊥
3. If a ∈ Σi, then γ ∈ γ′ and σ = σ′.

A (q0, w0)-run on a word u = a1 · · · an is a sequence of configu-
rations (q0, w0)

a1−→ (q1, w1) · · · an−−→ (qn, wn), and is denoted by
(q0, w0)

u−→ (qn, wn). A word u is accepted by M if there is a run
(q0, w0)

u−→ (qn, wn) with q0 ∈ Q0, w0 = ⊥, and qn ∈ QF . The
language L(M) is the set of words accepted by M . The language
L ⊆ Σ∗ is a visibly pushdown language (VPL) if there exists a
VPA M with L = L(M).


