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ABSTRACT
In this paper, we study a route summarization framework
for Personalized Navigation dubbed PerNav - with which
the goal is to generate more intuitive and customized turn-
by-turn directions based on user generated content. The
turn-by-turn directions provided in the existing navigation
applications are exclusively derived from underlying road
network topology information i.e., the connectivity of nodes
to each other. Therefore, the turn-by-turn directions are
simplified as metric translation of physical world (e.g. dis-
tance/time to turn) to spoken language. Such translation
- that ignores human cognition about the geographic space
- is often verbose and redundant for the drivers who have
knowledge about the geographical areas. PerNav utilizes
wealth of user generated historical trajectory data to extract
namely “landmarks” (e.g., point of interests or intersections)
and frequently visited routes between them from the road
network. Then this extracted information is used to obtain
cognitive turn-by-turn directions customized for each user.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

1. INTRODUCTION
Navigation applications that find optimal routes and cor-

responding turn-by-turn directions in road networks are one
of the fundamental and most used applications in wide va-
riety of domains. While the problem of computing optimal
path has been extensively studied and many efficient tech-
niques have been developed over the past several decades,
the turn-by-turn direction computation techniques have not
changed. Meanwhile, with the ever-growing usage of nav-
igation applications in mobile devices and car-navigation
systems, plethora of user generated trajectory data became
available. This data is particularly useful for producing more
effective and cognitive turn-by-turn information.
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Figure 1: Personalized Navigation Directions.

Taken Figure 1 as an example, suppose we plan to go to
a restaurant for dinner. Figure 1(a) shows a route provided
by navigation systems. With road network information,
turn-by-turn navigation directions can be generated (Fig-
ure 1(b)). These turn-by-turn directions are computed by
taking into account inherent cost measure (e.g., distance or
travel time) and angle (e.g., left or right) between the nodes
of the underlying road network. While verbose, it is hard to
be laconic without losing route information if we only have
road network data. However, experienced urban commuters
(i.e., majority of the drivers on roads) have good knowledge
about the city and will probably be familiar with a certain
part, sometimes most parts, of the route, e.g., routes from
home to nearby highways. Suppose the navigation software
knows that a user frequently visit a cinema which shares
a similar route with the restaurant, it can replace a large
part of navigation instructions with a single sentence, e.g.,
in Figure 1(c), drive towards the cinema via I-10 (the name
of a highway). Then for the parts of the route that are un-
familiar to the user, navigation software may continue using
detailed turn-by-turn directions. In this way, by leveraging
the wealth of user’s historical trajectory data, we may be
able to generate navigation directions that are both concise
and intuitive.

To achieve this goal, however, we have to further ad-
dress challenges in multiple spheres. First, how to effec-
tively extract landmarks and routes from trajectories which
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usually come with noise and uncertainty? Second, how to
utilize knowledge routes to generate personal navigation di-
rections that are concise but convey enough information
for user to interpret the route? - To address these chal-
lenges, we designed a prototype system called PerNav that
produces turn-by-turn directions by leveraging the wealth
of user’s historical trajectory data. In particular, PerNav
first extracts user’s knowledge about the road network by
leveraging trajectory calibration and trajectory clustering.
Then for a given route, PerNav partitions it based on ex-
tracted knowledge using dynamic programming and branch-
and-bound based approaches. The final step is to construct
a personalized navigation directions based on the route par-
tition. In summary, PerNav improves navigation applica-
tions in three ways. First, PerNav incorporates histori-
cal trajectory data to navigation applications to produce
higher-quality personalized turn-by-turn directions for ur-
ban commuters. To our knowledge, this paper is the first to
describe the use of trajectory data for generating personal-
ized turn-by-turn directions. Second, PerNav offers network
bandwidth reduction by significantly reducing the informa-
tion transferred between the server and navigation clients.
Third, PerNav allows user to customize the summary con-
struction process with different detailed granularities.

The remainder of this paper is organized as follows. In
Section 2, we formalize the problem and describe key tech-
niques. In Section 3, we present our prototype system with
real-world use cases. In Section 4, we review related work.

2. OVERVIEW
By referring to places and routes that are familiar to peo-

ple, we can provide them an intuitive view about a new
route. PerNav follows the same intuition to construct a
higher level summary for a route generated by navigation
software.

Figure 2: Framework overview of PerNav .

Figure 2 shows the overview of PerNav . The input of Per-
Nav is a route and the output is a personalized navigation
direction. This procedure mainly contains three steps, i.e.,
data preprocessing, route partition and summary genera-
tion. The first step for data preprocessing is offline while the
last two steps are online. In the data preprocessing, PerNav
will extract frequent visiting 〈starting point, destination〉
pairs and routes between them for every user, which are
called the knowledge of users, from users’ historical trajec-
tories. Then given a route, PerNav partitions it based on
extracted knowledge and the detail will be discussed in Sec-
tion 2.3. The final step is to construct personalized naviga-
tion directions based on the route partition. In what follows,
we will formalize the problem and describe the key technicals
behind each step.

2.1 Preliminaries Concepts
We adopt the standard road network representation in

which intersections are represented by nodes and roads are
represented by links with attached features. Link is also
known as road segment and we will use link and road seg-
ment interchangeably whenever the context is clear.

Definition 1 (Landmark). A landmark l is a geograph-
ical point in the space, which is stable and independent of
user trajectories.

A landmark can be either a Point of Interest (POI) or an
intersection in the road network, and a route in the road
network can be represented using landmarks.

Definition 2 (Route). Formally, a route R in the road
network is defined as a sequence of landmarks. R = [l1, l2, · · · ln].
R(i) denotes the ith landmark, i.e., li. Every two adjacent
landmarks are directly connected by a link in the road net-
work. Thus R can also be considered as a sequence of links.

In the road network, adjacent links usually share some fea-
tures, e.g., street name, direction. Based on these features,
we can divide the road network into disjointed routes, i.e.,
all the adjacent links with same features will be in the same
route. As this type of route is independent of specific per-
son, we call it natural route (NR). For example, in Figure 1,
S Atlantic Blvd is called a natural route. For a given route
R = [l1, l2, · · · ln], we can use a sequence of natural routes
[NR1,NR2, · · · ,NRm] (m ≤ n), to represent it, which is
known as the turn-by-turn manner, e.g., Figure 1(b), and
this manner is widely used by existing navigation systems.

Moreover, there exists another type of route which is spe-
cific to individuals. In real life, urban commuters will get
quite familiar with certain landmarks and routes between
some of them, e.g., the route from home to work or the route
from work to a shopping center. We call such a route knowl-
edge route (KR) for the urban commuter. In Figure 1(a), the
route from home to the cinema is an example of knowledge
route for the user.

Note that, a knowledge route usually contains multiple
natural routes, i.e., KR = [NRi,NRi+1, · · · ,NRj ]. Thus, if
this sequence of natural routes is a sub-sequence of R, we
can represent the route as:

R = [NR1, · · · ,NRi−1,KR,NRj+1, · · · ,NRk] k ≤ m ≤ n

which is called the personalized manner. Obviously, by using
knowledge routes, the personalized manner becomes more
concise, i.e., less number of the route-segments, and more
familiar to the urban commuter than the turn-by-turn man-
ner. In the following subsection, we will show how to extract
and measure knowledge routes by analyzing user’s historical
trajectories.

2.2 User Knowledge Measurement
With historical trajectories, PerNav first employs trajec-

tory calibration proposed in our previous research to map
them into routes in the road network [8, 10]. Then stay
points detection [15] is used to identify places that are famil-
iar to user. These places are used to generate the description
of knowledge routes. After that, PerNav groups trajectories
into clusters [13]. In each cluster, the most representative
route is extracted as a knowledge route connecting a source
and a destination. Besides, for each knowledge route, we
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calculate a familiarity score f(R) ∈ [0, 1], which indicates
the user’s familiarity of this knowledge route. f(R) is af-
fected by the following aspects: 1) The frequency this route
is traversed. 2) The significance of start and end landmarks
of this route. The significance of landmarks are calculated
by leveraging a HITS-like algorithm [15] which models the
travellers as authorities, landmarks as hubs, and check-ins
as hyperlinks. In PerNav , normalized weighted sum of these
two factors is used as the familiarity score. Note that, for a
natural route, its familiarity to a user is 0 by default.

Given the familiarity of a route R, we can derive the fa-
miliarity of its segments, i.e., route segment.

Definition 3 (Route Segment). A route segment RS
= R(j, k) = [lj , lj+1, · · · , lk], is defined as a sub-sequence of
route R. It can also be seen as a sequence of links connecting
lj and lk.

Based on the type of R, a route segment can be either a
natural route segment or a knowledge route segment. The
familiarity of a route segment is calculated using Equation 1

f(RS) = f(R(RS)) · g
( len(RS)

len(R(RS))

)
(1)

where R(RS) is the corresponding knowledge route of RS,
len(RS)

len(R(RS))
is the length ratio of RS. g(·) is a monotonic

convex function with g(0) = 0 and g(1) = 1. With the
decrease of length ratio, the familiarity score decreases faster
than a linear function which is more consistent with human
being’s cognition.

2.3 Knowledge-based Route Partition
Usually, if we want to describe a route, we will partition

it into route segments and then give description for each of
them.

Definition 4 (Route Partition). For a route R, a
partition of it P(R) = {RS1, RS2, · · · , RSn} is such that:

•
⋃n

i=1RSi = R

• ∀i, j RSi ∩RSj = ∅

Each route segment RSi can be either a knowledge route seg-
ment or a natural route segment.

For a route R in the road network, we can partition it in
many ways resulting in possibly different navigation direc-
tions. Generally, we want the generated directions 1) be in-
tuitive and easy for user to understand, i.e., utilizing knowl-
edge routes with high familiarity in generated directions;
and then 2) be concise, so it will be easy for human beings
to read and share, i.e., minimize the number of route seg-
ments. With these objectives, we can evaluate the quality
of a partition P by equation 2:

QP(R) =
∑

RSi∈P(R)

f(RSi)− λ|P(R)| (2)

Popt(R) = argmax
P(R)

QP(R) (3)

where f(·) is the function to calculate the familiarity score
in Equation 1, |P(R)| is the number of route segments in this
partition, λ ≥ 0 is used to constrain the number of segments
in the generated route partition. We want to find the route
partition P(R)opt that maximize QP(R).

The näıve approach is to enumerate all the possible com-
bination of route segments and choose the one with maxi-
mum score. However, the time complexity is exponential in
terms of the number of links in the route. In the following
paragraphs, we will show that dynamic programming can be
used to find the optimal route partition efficiently.

Definition 5 (Conditional Route Partition). Gi-
ven a route R = [l1, l2, · · · , ln], its conditional route parti-
tion P(R(1, i)|R′(·, ·)) is defined as route partitions with the
last route segment, i.e., RS, coming from route R′.

Specially, P
(
R(1, i)|R′(j, k)

)
represents the conditional route

partition with the last route segment equals to R′(j, k).

Lemma 1. The optimal partition of a route is the best
conditional optimal partition among all candidate routes for
the last link.

Popt(R(1, i)) = argmax
P

Q
(
Popt(R(1, i)|R′(·, ·)

)
(4)

R′ ∈ R(R(i− 1, i))

where R(R(i − 1, i)) is the set of all the routes that con-
tains link R(i − 1, i). The proof is straightforward, as we
enumerate all possible conditions and choose the best one.

Lemma 2. The conditional optimal route partition of a
sub-route R(1, i + 1), i.e., Popt(R(1, i + 1)|R′(·, ·)), can be
derived from conditional optimal route partitions of R(1, i),
i.e., Popt

(
R(1, i)|R′′(·, ·)

)
.

Popt(R(1,i+ 1)|R′) = argmax
R′′∈R(R(i−1,i))

(5)

Q
(
Popt

(
R(1, i)|R′′(·, ·)

)
∪
(
R(i, i+ 1) 7→ R′

))
where R

(
R(i−1, i)

)
is the set of all the routes that contain

link R(i − 1, i), and Popt

(
R(1, i)|R′′

)
∪
(
R(i, i + 1) 7→ R′

)
means mapping the link R(i, i + 1) to R′ and merge it
to the conditional optimal partition Popt(R(1, i)|R′′). Let
∆Q

(
R(i, i+ 1) 7→ R′

)
denotes the score change after map-

ping the link R(i, i + 1) to R′. According to Equation 2,
∆Q

(
R(i, i + 1) 7→ R′

)
will be the same as long as the last

segment of P is mapped to a route other than R′. Thus,
we can iteratively find the optimal partition using dynamic
programming.

2.4 Summary Construction
After the partitioning step, a route R will become a se-

quence of route segments. Then PerNav will generate nav-
igation directions by describing knowledge route segments
and natural route segments respectively. As knowledge route
R is familiar to user, we can describe it using some key
features, e.g., the start/end landmark, the main highway,
rather than describing all the natural routes in it. In order
to construct more fluent summary sentences, we also define
sentence templates, e.g., drive towards POI name via most
representative feature of the knowledge route. The most sig-
nificant POI within a certain distance is selected to generate
the summary.

For natural routes, traditional turn-by-turn directions gen-
erations techniques can be used. Moreover, in PerNav user
can specify the description granularity of directions. Under
the configuration of the most detailed granularity, PerNav
will generate descriptions for every single route segments.
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The result will be similar to turn-by-turn directions provided
by current navigation systems. With the decrease of detail
level, less important route segments, i.e., low-level roads and
short roads, will be omitted.

3. DEMONSTRATION
In this section, we will present a detailed demonstration

plan and how user can interact with the system. PerNav
has both web application and mobile application. Figure 3
shows GUI of the web application.

Figure 3: Main GUI

The left panel is for settings and query setup while the
right panel is used for result visualization. Since PerNav re-
quires historical trajectories information to work properly,
we create several built-in profiles based on the following tra-
jectory datasets: Geolife [14, 15], and Planet.gpx [1]. Geo-
life dataset consists of trajectories of 178 users over a period
of four years while Planet.gpx contains the GPS traces up-
loaded by OpenStreetMap users within 7.5 years. Users can
click to select which profile they prefer. Besides, users are
allowed to create their own profiles. This can be done by
specifying a set of 〈source, destination〉 pairs, a route con-
necting each pair and familiarity score of each route.

After choosing the profile, user can construct the input in
following ways: 1) PerNav provides several built-in query
routes for demonstration purpose; 2) user can interactively
create a route by pinning and dragging. Then PerNav will
generate a personalized route description with correspond-
ing details visualized on the map. In addition, users are
allowed to play with a set of parameters to customize the
route summarization procedure.

4. RELATED WORK
The problem proposed in this work is relevant to trajec-

tory processing and trajectory querying issues, including tra-
jectory data mining [13, 5, 6], popular route discovery [7, 3],
personalized route recommendation [2, 4, 9]. The method
to discover personalized routes from trajectories is proposed
in [2], while the approach to find popular routes is inves-
tigated in [3]. In [12, 4], algorithms to recommend routes
based on historical trajectories are described. [11] proposes
a system to construct summary for raw trajectory. How-
ever, none of these problems are same with ours. Our work
is mainly regarding reinterpreting an existing route in a way
that is intuitive to user and easy to follow, while the vast

majority of existing works are dealing with general min-
ing/prediction/recommendation problems.
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