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Abstract—Shared-nothing systems such as Hadoop vastly sim-
plify parallel programming when processing disk-resident data
whose size exceeds aggregate cluster memory. Such systems incur
a significant performance penalty, however, on the important class
of “groupwise set-valued analytics” (GSVA) queries in which the
data is dynamically partitioned into groups and then a set-valued
synopsis is computed for some or all of the groups. Key examples
of synopses include top-k sets, bottom-k sets, and uniform random
samples. Applications of GSVA queries include micro-marketing,
root-cause analysis for problem diagnosis, and fraud detection.
A naive approach to executing GSVA queries first reshuffles all
of the data so that all records in a group are at the same node
and then computes the synopsis for the group. This approach
can be extremely inefficient when, as is typical, only a very
small fraction of the records in each group actually contribute
to the final groupwise synopsis, so that most of the shuffling
effort is wasted. We show how to significantly speed up GSVA
queries by slightly modifying the shared-nothing environment
to allow tasks to occasionally access a small, common data
structure; we focus on the Hadoop setting and use the “Adaptive
MapReduce” infrastructure of Vernica et al. to implement the
data structure. Our approach retains most of the advantages of a
system such as Hadoop while significantly improving GSVA query
performance, and also allows for incremental updating of query
results. Experiments show speedups of up to 5x. Importantly, our
new technique can potentially be applied to other shared-nothing
systems with disk-resident data.

I. INTRODUCTION

Modern enterprises have two primary tools for extract-
ing insights from their petabyte-scale data archives: parallel
processing and data synopses. Parallel processing in shared-
memory or shared-nothing environments exploits heavy-duty
hardware to allow analysis of massive data sets, and is increas-
ingly being provided on a pay-as-you-go basis in computing-
as-a-service environments. Often, the goal of parallel process-
ing, especially in the context of exploratory analysis, is to
compute data synopses, that is, small, lossy summaries that
capture important characteristics of the data [1]. One common
type of synopsis is a top-k or bottom-k synopsis; such subsets
of the data capture data elements that are “significant” with
respect to some criterion (wealthy citizens, costly insurance
claims, nearest neighbors). An equally important kind of
synopsis is a uniform random sample, which allows a user
to get a feel for the data by manually inspecting a small
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set of representative elements. Importantly, a wide variety of
analyses can be executed on a sample to quickly approximate
the result of the analysis when applied to the entire dataset;
such estimates can often be accompanied by probabilistic error
bounds.

Shared-nothing environments with MapReduce-based in-
frastructures such as Hadoop are increasingly being used to
collect, store, and analyze massive data, e.g., to perform the
type of synopsis computation described above. Hadoop, in
particular, is attractive because it is open-source, free, and
can scale to hundreds or even thousands of nodes and many
petabytes of data. A perhaps even more important reason for
the pervasiveness of Hadoop installations is the simplicity of its
parallel programming model, especially relative to traditional
models based on asynchronous communication between nodes
(e.g., via message passing systems such as MPI). Unfortu-
nately, the simplicity of specifying analytics tasks in Hadoop
is often obtained at the cost of query performance.

Specifically, consider groupwise set-valued analytics
(GSVA) queries. For a GSVA query, the dataset D is first
dynamically partitioned into g ≥ 1 groups G1, G2, . . . , Gg
(also called strata) such that D =

⋃g
i=1Gi. The partitioning

is based on attribute values of the data elements as in a classic
SQL GROUP-BY operation. Then a synopsis is computed
for each group Gi by applying a set-valued query. In the
case where the synopsis is a random sample, the process is
usually called stratified sampling, and one can analogously
refer to stratified top-k and stratified bottom-k computations.
For the latter two types of queries, each tuple is assigned a
weight, and then, for each group, the set of records with the
k highest weights (top-k) or k lowest weights (bottom-k) are
returned. In the context of micromarketing, for example, we
might want to stratify the population by zip code and age,
compute a sample for each resulting group, and then use
an analytical tool such as Weka, R, BUGS, SPSS, or SAS
to build a sample-based classifier for each group to predict
the effectiveness of customized advertisements. As another
example, we might stratify transaction records by county and
by whether or not the transactions are fraudulent; for each
resulting group of fraudulent transaction records, we examine
the top-k transactions with respect to the total transaction
amount, to look for informative patterns. Similar queries arise
in root-cause analysis for problem diagnosis.

The difficulty with GSVA queries is that, under an ad hoc
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group definition, the records for each group will in general
be initially distributed across the different processing nodes.
Thus, to process the query in Hadoop, the data is first shuffled
across the network so that all records from a given group are
at the same node, and then the set-valued query is executed
on the group to compute the desired synopsis. This massive
data-shuffling phase is extremely time consuming and typically
quite wasteful, because most of the shuffled records will not
contribute to a small sample or small top-k synopsis and hence
be discarded. It may be possible for each node to roughly
estimate the set of records that will need to be shuffled and
then buffer these records locally as they are scanned from
disk, but because the nodes do not communicate with each
other and need to be conservative in their estimates to ensure
that no result records are missed, the buffered record sets will
inevitably be too large, thereby wasting local memory and still
using up too much network bandwidth. Besides impeding other
users’ jobs that are trying to run on the cluster, this waste of
resources will translate into a waste of money in a pay-as-
you-go setting. The question thus arises as to whether there
are more efficient ways to process GSVA queries. We restrict
attention to algorithms that require only a single pass over the
data; multi-pass algorithms are usually too expensive.

One possibility is to try and execute the GSVA query over
a uniform random sample of the entire data set. The difficulty
is that smaller groups may not contribute any records to the
sample, and will therefore be erroneously omitted from the
query result. Similarly, a group may be represented, but with
so few records as to make statistical inferences about the
group unreliable. That is, naive sampling is inappropriate for
such “needle-in-a-haystack” situations. For instance, the set of
fraudulent transactions is usually much smaller than the set of
legitimate transactions and hence can easily be missed when
sampling.

Another possibility is to try and use indexes to filter
out irrelevant records prior to shuffling; see, e.g., [2] and
references therein. Such indexes are not standard in Hadoop,
and can require non-negligible storage and maintenance effort;
moreover, appropriate indexes may not be available for a given
ad hoc query.

A third approach has been proposed in the context of
distributed random sampling by Tirthapura and Woodruff [3],
building on initial results in [4]; we denote the resulting
algorithm as TW in the rest of the paper. Given a set of k
nodes corresponding to k streams, TW maintains at all times
a bottom-k set of the union of the streams. A coordinator
maintains this set at a special coordination site by exchanging
synchronous messages with the nodes. The authors in [3] show
that, with high probability, the number of messages exchanged
using their protocol is within a small constant factor of the
minimum number possible. Unfortunately, this technique is not
practical in our setting. TW requires synchronous and ad hoc
message exchanges, which are incompatible with MapReduce.
Moreover, when there are many groups, the communication
overhead can become prohibitive because a sequence of coor-
dination messages must be exchanged for each group.

In this paper, we investigate novel approaches for handling
some key GSVA queries that slightly relax the shared-nothing
assumption and allow tasks to occasionally access a small,
common data structure. We allow each mapper to maintain

GARAM TW Vanilla

Coord. size (GB) 0.3 77 N/A#msgs (M) 10 (async) 600 (sync)

Shuffle size (GB) 36 N/A 630
#msgs (M) 300 6000

Fig. 1. Typical network utilizations.

some state information and use the “Adaptive MapReduce”
framework developed in [5] to coordinate the mappers; this
framework includes a “distributed metadata store” (DMDS)
that serves as the shared data structure. The resulting algo-
rithm, called GARAM (Groupwise Analytics Running on Adap-
tive MapReduce), combines the two communication patterns
embodied in “Vanilla” (i.e., standard) MapReduce and TW; in
the former, all of the data is shuffled at the end of the job to
produce the stratified synopses, whereas in the latter ad hoc
synchronous coordination messages are continually exchanged
to maintain a synopsis at all times. GARAM sends a small set
of ad hoc asynchronous coordinating messages to minimize the
amount of data exchanged during a final shuffling phase. Fig-
ure I shows some typical experimental results (see Section VIII
for details), which indicate that, with respect to network
resource consumption, GARAM outperforms both TW and
Vanilla MapReduce by orders of magnitude. The savings in
end-to-end response time is also dramatic: GARAM is up to 5x
faster than Vanilla MapReduce. We emphasize that TW relies
on ad hoc synchronous communication, which is prohibitively
expensive in practice, whereas GARAM uses asynchronous
communication between mappers, which is vastly more effi-
cient. Note that GARAM requires fewer messages than the
near-optimal TW algorithm. This is because TW maintains
a synopsis at all times, whereas GARAM produces the final
result only when the query completes.

Roughly speaking, the idea is to maintain, at each node
and for each group, a local version of the desired synopsis.
Using the DMDS, histogram summaries of these local versions
are periodically combined to estimate a sequence of global
threshold values that can be used to prune records at each
node, thereby avoiding the need to shuffle these records at
the end of the job. An important advantage of our approach
is that, by maintaining the thresholds, the stratified synopsis
can be incrementally updated efficiently as new data arrive;
other approaches are hard pressed to provide this functionality.
Moreover, the use of Adaptive MapReduce allows for suspend-
ing and then resuming a GSVA query, which can be useful for
managing response times when multiple users are sharing a
MapReduce cluster; standard Hadoop does not support such
early-out functionality.

GARAM is useful not only for exploratory analysis, where
the groups are specified according to the needs of the ana-
lyst, but also for decision support and business intelligence
queries [6], [7], [8]. In these latter scenarios, the groups and
their corresponding synopsis sizes are usually chosen based
on past query workloads. Our work can complement these
applications whenever they require the use of MapReduce clus-
ters and approximate query results with good approximation
guarantees.

In addition to our results on GSVA queries, we show how
GARAM can be combined with approximate thresholding to
handle top-r stratified sampling queries. Given integers k, r >

2



0, such queries return a sample of size k not for each group,
as with a standard stratified sampling query, but only for the
r largest groups. In our prior micro-marketing scenario, for
example, resource or time limitations might dictate that we
focus on the r largest (age, zip code) customer groups.

Although we focus primarily on MapReduce environments
because of their ubiquity and broad commercial adoption,
our techniques can potentially improve performance in other
shared-nothing environments with disk-resident datasets that
significantly exceed aggregate cluster memory. These include
systems such as Tez [9], Hyracks [10], and Stratosphere [11].
We note that GARAM can also be implemented in systems
that are designed primarily for in-memory processing, such as
Spark [12]. Our methods, however, are primarily useful when
the data will not fit in memory, a situation that, by design,
occurs less often in systems like Spark.

II. ADAPTIVE MAPREDUCE

As mentioned above, our discussion centers on groupwise
analytics queries in a MapReduce shared-nothing cluster en-
vironments. MapReduce is a parallel computation framework
that was originally developed at Google [13] and implemented
later as part of the Apache Hadoop open-source project [14].
The framework was designed to scan and aggregate large data
sets in a robust, flexible, and scalable manner. The framework
processes jobs, which consist of map and reduce stages. In
the map stage, a set of mapper tasks scans the input data
set, transforms each input record using a user-defined map
function, and extracts a grouping key. In the reduce stage,
the map outputs are shuffled across a network and grouped
according to the grouping key, such that all records in a given
group are sent to the same node; at this node, a reducer task
aggregates the group using a user-defined reduce function, and
writes out the result. Mapper tasks run independently and in
parallel, as do reducer tasks. In Hadoop terminology, each
processing node is divided into a fixed number of slots, which
corresponds to the maximum number of concurrently running
tasks; at most one task can run in a slot at any time. By
design, the MapReduce framework can make progress on a
job as slots become available, can balance the workload across
heterogeneous processing nodes, and can tolerate failures.

The MapReduce programming paradigm significantly sim-
plifies the specification of massive-scale analytics but, as
discussed previously, can result in suboptimal performance.
The Adaptive MapReduce environment introduced by Vernica
et al. [5] improves performance and simplifies job tuning
over MapReduce by modifying standard MapReduce to allow
some limited dependence between mapper tasks. The Adaptive
MapReduce framework is carefully designed to preserve the
fault-tolerance, scalability, and programming API of MapRe-
duce. Mappers exchange information through an asynchronous
communication channel implemented with a distributed meta-
data store (DMDS), so they are aware of the global state of
the job and can collaboratively make optimization decisions.

To speed up GSVA queries, GARAM exploits two tech-
niques from Adaptive MapReduce. Adaptive Mappers dy-
namically take multiple data partitions (“splits” in Hadoop
terminology) and make a decision after every split to either
checkpoint or take another split and “stitch” it to the already

processed one(s), thereby minimizing task-startup overhead,
and improving both data locality and load balancing. Adaptive
Combiners improve local aggregation by maintaining a cache
of partial aggregates for the frequent keys. These techniques
are injected into the map tasks and they all rely on DMDS
for global communication. GARAM also makes use of DMDS
directly, and follows design principles of Adaptive MapReduce
techniques to ensure its scalability and fault tolerance. See [5]
for further details on Adaptive MapReduce.

III. GSVA ALGORITHMS: OVERVIEW

In the following sections we develop a variety of algorithms
for GSVA queries in MapReduce and extended MapReduce
environments and show how buffering and coordination ideas
can lead to performance improvements. We focus on stratified
bottom-k, top-k, and sampling queries as primary representa-
tives of the class of challenging GSVA queries. An example of
another type of GSVA query that can be handled by methods
similar to the ones discussed here returns for each group all
records within p% of the minimum weight in the group, for
some p > 0.

To handle the three types of queries considered, it suf-
fices to restrict attention to bottom-k queries alone. Bottom-
k queries return the records with the k lowest weights, so
that top-k queries can be handled by multiplying the weights
by −1 and then applying a bottom-k algorithm. Moreover,
if the weights are generated as random numbers uniformly
distributed between 0 and 1, then the bottom-k set for a group
corresponds to a size-k uniform random sample of the group.
This method is sometimes called “bottom-k sampling” and
is used in distributed stream processing [3], [4], as well as
in many other settings; see for example [15], [16], [17]. For
simplicity, we assume throughout that all of the weights in a
dataset are distinct; this assertion holds for stratified bottom-k
sampling, and the extension to the general case involves some
tedious details, but is straightforward. Also, to avoid trivialities,
we assume that every group has at least k records overall.

In practice, pseudorandom number generators (PRNGs) are
used to produce the weights needed for stratified-sampling
queries. PRNGs recursively and deterministically produce a
stream of numbers between 0 and 1 that “appear” random
for all practical purposes. High quality PRNGs—having good
“structural” properties and passing a wide range of statistical
tests for randomness—are readily available; one example is
given by the WELL family of generators [18]. Extra care has
to be taken in distributed environments, where multiple sub-
streams of independent numbers are required. In our work, we
use “jump ahead” capabilities of the WELL generators [19]
to generate disjoint (and hence effectively independent) sub-
streams from the WELL generator, one substream per data
split. It is also possible to use hash functions to compute the
sampling weights.

The algorithms discussed in this paper can easily be
extended to handle the case where the synopsis size k varies
from group to group. For example, the techniques we describe
in this paper can be used in conjunction with STRAT [8]
and BlinkDB [6]; these systems use stratified synopses for
Business Intelligence workloads, where the strata and their
sizes are chosen to optimize query accuracy. It is often
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Algorithm 1 (Bottom-k Computation)
1: D: Input dataset of (record, weight) pairs
2: L: list of k pairs with smallest weights seen so far
3: L.maxWt(): returns the largest weight in L
4: L.popMax(): removes element of L with largest weight
5:
6: for each pair (r, w) ∈ D do
7: if |L| < k then
8: L.insert(r, w)
9: else if w < L.maxWt() then

10: L.insert(r, w)
11: L.popMax()
12: end if
13: end for
14: Return L as the bottom-k set

desirable, however, to keep the synopsis sizes equal. For
example, if the group sizes vary widely, stratified sampling
with samples of equal size ensures that sample-based estimates
of groupwise characteristics can be made with equal accuracy
across groups, thereby allowing statistically meaningful inter-
group comparisons.

IV. VANILLA MAPREDUCE

This is the “Vanilla” algorithm mentioned previously, as
implemented in MapReduce. Each mapper emits 〈key, value〉
pairs, where key is the grouping key and value is the input
record. The pairs are shuffled over the network, with the
reducers collecting all pairs with the same key to form a
group. Then the bottom-k set is computed for each group
using Algorithm 1 and output to disk. This algorithm is the
building block for all of our methods, so we briefly discuss
its computational complexity. Clearly, the bottom-k set can be
computed via a single scan of the data using O(k) memory; the
sorted list L can be implemented using, e.g., a priority queue.
If the pairs are scanned in random order, then CPU cost for the
reducer (over and above any CPU cost incurred by scanning
the records) is given by the following result, which generalizes
Theorem 1 in [15]; see the Appendix for a proof.

Theorem 1: For a group G = { (r1, w1), . . . , (rn, wn) }
with w1 < · · · < wn, suppose that Algorithm 1 processes the
pairs in the order (rΠ(1), wΠ(1)), . . . , (rΠ(n), wΠ(n)), where
Π is a permutation of { 1, 2, . . . , n } that is selected ran-
domly and uniformly from the set of all such permutations.
Then the expected CPU cost to construct a bottom-k set is
O(n+k log k log n). The minimum cost is O(n+k log k) and
the maximum cost is O(n log k).

In the case of stratified sampling, running the bottom-k
algorithm on a group is essentially equivalent to running a
“reservoir sampling” algorithm, and optimizations for reservoir
sampling can potentially be applied; see [20], for example. The
Vanilla algorithm is typically quite slow because it requires
shuffling of the entire data set.

V. OTHER MAPREDUCE APPROACHES

In this section we discuss methods that improve upon
Vanilla while allowing implementation in standard MapReduce
environments.

A. Buffered MapReduce

The Buffered MapReduce method for computing GSVA
queries can reduce the shuffle volume dramatically by main-
taining some state at every mapper, as shown in Figure 2(a).
In the map phase, each mapper runs the bottom-k algorithm
(Algorithm 1) and emits a local sample of k records per group
(or fewer if a group contains less than k records locally). Then,
for each group, the reducers collect all samples for the group
and merge them into a global sample by further selecting the
k records having minimum weights (again using Algorithm 1).
Thus instead of shuffling all of the records, only O(gkm)
records are shuffled, where g is the number of groups and m
is the number of mappers. Basically, the local nodes perform
some initial filtering, removing records that cannot possibly
belong to the final bottom-k synopsis. (Clearly, if a record
does not belong to a local bottom-k synopsis, then it cannot
belong to a global bottom-k synopsis.) The local synopses can
be viewed as partial results of the kind usually associated with
the Hadoop “combiner” operator. When the number of records
that a mapper sees per group is larger than k, then Buffered
can substantially reduce the volume of shuffled data. As the
number of records per group approaches k, Buffered degrades
to Vanilla.

As mentioned previously, Algorithm 1 essentially reduces
to a reservoir sampling algorithm when the GSVA query is
a stratified sampling query. Although optimizations as in [20]
can be exploited by the reducers, they cannot be exploited
by the mappers. Indeed, the optimizations allow skipping of
records (and thus less I/O), but such skipping is impossible on
the mapper side: because the strata are dynamically defined,
each record has to be examined in order to be assigned to a
stratum prior to any sampling.

Another important implementation issue is buffer manage-
ment, which can be challenging when there is a “long tail”
comprising a huge number of small groups. Indeed, the amount
of memory consumed at each mapper is O(gk), and the local
buffer for a mapper can fill up. In our initial implementation of
Buffered and related algorithms, the mapper is allocated a fixed
chunk of memory. This memory is actually split between two
buffers, one for data (full records) and another for “metadata”
(the key and weight for each record). In experiments 1GB
was used for each buffer. Whenever the buffer fills up, large
groups of sample records are flushed to the output, to be
sent to the reducers. (Flushing in large chunks maximizes
efficiency.) The records with smallest weights are flushed first,
because they have the best chance of making it into the final
output. The metadata (i.e., the weights of flushed records)
are retained, subject to memory constraints, so they can be
used to filter future records as they are scanned. Whenever
the metadata buffer fills up, a group is selected at random
and its metadata is flushed. Finally, to maximize the benefit
of buffering, our implementation uses the Adaptive Mappers
mentioned in Section II, generating one map task per slot as
opposed to the default of one task per data block.

B. Approximate Thresholding

Under some additional assumptions, the buffered approach
can be improved further while still remaining within the
standard MapReduce framework. In particular, suppose that (i)
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Fig. 2. GSVA query processing with MapReduce.

it is acceptable if, with some small probability, the synopsis
size for a group is somewhat less than k, (ii) a good estimate
ni of the size of group Gi is available for each i, and (iii)
for all i, the record weights for Gi can be accurately modeled
as independent and identically distributed (i.i.d.) samples from
some continuous cumulative distribution function Fi. Assump-
tion (iii) holds in the case of stratified sampling, where F is
the uniform distribution: F (x) = x for x ∈ [0, 1]. The idea
is to estimate for each Gi the global threshold wi,(k), which
is defined as the kth smallest weight for all records in the
group. Then Buffered is run as before, but now each mapper
maintains the set of records whose weights do not exceed the
threshold.

Observe that if wi,(k) is known exactly for Gi, then the total
number of buffered Gi records over all of the mappers is k, and
each mapper buffers only a small fraction of these k records.
Thus the data shuffling effort can be significantly reduced
from O(gkm) to O(gk). In practice, however, wi,(k) is usually
unknown and must be estimated. If the estimate ŵi,(k) is too
large, then the total number of buffered records over all of the
mappers will exceed k, but the excess “false positive” records
will be filtered out by the reducers, and exactly k records will
be produced. That is, performance will be suboptimal but exact
results will be returned. If ŵi,(k) is too small, then records will
be erroneously filtered out by the mappers, so that the returned
results will be an approximation of the exact solution, in that
one or more of the stratified bottom-k synopses will contain
fewer than k records. Thus our estimate should actually be
an overestimate such that the probability of false negatives is
small. Under Assumptions (ii) and (iii) above, we can proceed
by observing that, for each group Gi, the threshold wi,(k) is
the kth order statistic of a sample of size ni from distribution
Fi. By standard results for order statistics [21, p. 10], we have

P (wi,(k) ≤ x) = Beta
(
Fi(x); k, ni − k + 1)

def
= Hi(x), (1)

where Beta(x; a, b) =
∫ x

0
ta−1(1 − t)b−1 dt

/ ∫ 1

0
ta−1(1 −

t)b−1 dt denotes the standard beta distribution with parameters
a and b. For some small value ε > 0, let qi,ε be the unique
solution of Hi(q) = 1− ε, i.e., the (1− ε)-quantile of Hi, and
set ŵi,(k) = qi,ε. Then the probability is at most ε that ŵi,(k)

will underestimate the true threshold, so that one or more Gi
records will be incorrectly filtered out by the mapper. With this
choice of ŵi,(k), it can be shown that the expected number of

false positives is given by φ(qi,ε), where

φ(q) =
ni − k

IB(1; k, ni − k + 1)

×
[
F (q)IB

(
F (q); k, ni − k

)
− IB

(
F (q); k + 1, ni − k)

]
and IB(x; a, b) =

∫ x
0
ta−1(1 − t)b−1 dt is the incomplete

beta function. Suppose, for example, that F is the uniform
distribution, group Gi contains ni = 10, 000 elements, and we
want a global sample of size k = 100. Taking ε = 0.01, we
find that qi,ε ≈ 0.012, which yields about 25 false positives,
i.e., there is roughly a 25% overhead of wasted shuffling. In the
next section we show how, by allowing limited coordination
between mappers, we can obtain general algorithms for GSVA
queries that yield exact results (no records incorrectly filtered
out) while effectively pruning records (i.e., false positives) in
the map phase.

VI. METHODS BASED ON COORDINATION

The methods in this section build on the Buffered approach.
We exploit the fact that with lightweight coordination between
mappers, the buffers can be significantly pruned while the
mappers are running.

A. MHD Algorithm for Stratified Sampling

In the special setting of stratified sampling, a variant of
the Buffered approach maintains local bottom-k samples and
then executes a subsampling step before the shuffle phase
in order to optimize the shuffle. Specifically, for group Gi,
mapper Mj computes a local count ni,j of the number of Gi
records. These counts are sent to a coordinator, who computes
an aggregate count ni for the group and then generates an
exact sample size Ki,j for each mapper using a multivariate
hypergeometric distribution (MHD). That is, for nonnegative
integers ki,1, ki,2, . . . , ki,m such that ki,1+ki,2+· · ·+ki,m = k,
we have

P (Ki,1 = ki,1, . . . ,Ki,m = ki,m) =
m∏
j=1

(
ni,j
ki,j

) / (ni
k

)
.

Then each mapper Mj randomly selects Ki,j records from its
bottom-k sample of Gi records, and shuffles these samples to
the reducers. This procedure transfers the final filtering step
from the reducers to the mappers. Thus there are no false-
positive records, and the reducers simply merge the partial Gi
samples into a global sample from Gi.
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Unfortunately, although this algorithm is optimal with
respect to the shuffle, it is not well suited to the MapReduce
architecture. The reason is that the optimization step is a
synchronization barrier: the process needs to wait until all
mappers have completed their data scans before shuffling
can commence, and its overall performance is thus limited
by the performance of “stragglers.” This bottleneck can be
severe; mappers can work at different speeds due to their
heterogeneous performance characteristics, as well as to data
skewness and layout (see Theorem 1), and some of them
may even fail. In general, a MapReduce job cannot make any
assumptions about its degree of parallelism, i.e., how many of
its tasks will run concurrently. Thus effective algorithms must
be asynchronous. Another drawback of the MHD method is
that, like Buffered, the amount of memory consumed at each
mapper is O(gk), which can become large.

B. GARAM

We now describe the GARAM algorithm, which is ap-
plicable to general bottom-k queries, returns an exact result,
approximately minimizes the number of shuffled records, and
avoids synchronization barriers.

1) Coordinating Threshold Estimates: First recall that the
(global) group threshold wi,(k) of group Gi is defined as the
kth smallest weight for all records in the group. Mappers and
reducers can have different views of the group threshold. Each
mapper only sees a subset of records, so it computes a local
threshold, i.e., the kth smallest weight of the Gi records that
it sees. Reducers, on the other hand, see all of the weights, so
they arrive at a global threshold.

Example 1: Suppose that the Buffered algorithm is applied
with only a single group and with k = 2. There are six records,
r1 through r6, and two mappers, M1 and M2, each of which
processes three records. Suppose that mapper M1 processes r1

through r3 having weights 0.5, 0.9, and 0.1, and mapper M2

processes r4 through r6 having weights 0.7, 0.6, and 0.2. Each
mapper maintains a local sample of size two. As a result, M1

drops (r2, 0.9) and emits 〈key, {(r3, 0.1), (r1, 0.5)}〉; mapper
M2 drops (r4, 0.7) and emits 〈key, {(r6, 0.2), (r5, 0.6)}〉. The
local thresholds for M1 and M2 are 0.5 and 0.6. In the reduce
phase, the two samples are merged so that the two records
with minimum random weights comprise the final output. So
the reducer emits 〈key, {(r3, 0.1), (r6, 0.2)}〉 and the global
threshold is 0.2.

In Example 1, four records (r1, r3, r5 and r6) are shuffled
to the reducer and half of them (r1 and r5) are dropped in
the reduce phase. That is, as discussed previously, the shuffle
cost is O(gkm) as opposed to the ideal cost of O(gk) that
corresponds to the case of no false-positive records. It is
therefore desirable to remove the factor m, or at least reduce
it to a constant close to 1, without affecting correctness.

The key idea in GARAM is to use coordination between
mappers to better approximate the global threshold as shown
in Figure 2(b). In the figure, the coordinator communicates
with all mappers and thus its view of the global threshold
is more accurate than those of the mappers. The coordinator
periodically communicates to the mappers its view of the
global threshold which mappers can use to pre-filter local
samples. In this way, we can expect a reduced shuffle volume

JobID
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Groupg

Root

Mapper
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Fig. 3. Asynchronous coordination.

and consequent performance boost. The details are given
below.

For each group, GARAM estimates the global threshold
from a union of histograms collected by the mappers and hav-
ing b > 1 bins per histogram. Each histogram is approximately
an equi-depth histogram of the values in the buffer, subject to
the restriction that each bin boundary corresponds to an actual
weight that is present in the buffer. Specifically, a histogram is
constructed by sorting the n values in the buffer (which are all
distinct by assumption) in ascending order and then computing
the first upper bin boundary as the dn/beth smallest weight, the
second upper bin boundary as the 2dn/beth smallest weight,
and so on, until the maximum weight is encountered.1 Thus
the count for each bin but the last is dn/be; the count for the
last bin may be smaller.

Because the goal is to compute the bottom-k synopsis
exactly, GARAM combines histograms in such a manner so as
to guarantee that the threshold is not underestimated. (Recall
that an overestimate is acceptable with respect to correctness
since the false-positives will be filtered out by the reducers.)
Each b-bin histogram provides an accurate picture of the
distribution of weights in the buffer while ensuring that the
bin counts are exact, as is needed when providing guarantees.

For ease of exposition, we first describe a synchronous
version of the threshold-estimation protocol, and then describe
GARAM’s actual asynchronous implementation. Each mapper
maintains a buffer of up to k records per group, similar to
the Buffered MapReduce algorithm. Because GARAM uses
thresholds, however, the average buffer size will be much
smaller than k. For a given group Gi, the synchronous protocol
runs the following three-step coordination rounds at fixed time
intervals. First, each mapper computes an equi-depth histogram
of b bins over the weights that it currently has in its Gi
buffer. The mapper sends the histogram to the coordinator
encoded as a list of b pairs of the form 〈ti,l, ci,l〉, meaning that
bin l contains ci,l values between ti,l−1 and ti,l. Second, the
coordinator sorts the list of all such pairs in order of ascending
ti,l values. It then scans the list in this order and computes the
running sum of ci,l’s. Whenever the running sum becomes
greater or equal to k, the current ti,l becomes the new global
threshold estimate ŵi,(k). If the sum of all ci,l’s is less than k,

1Here dxe denotes the smallest integer greater than or equal to x.
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Protocol 1 (GARAM Coordination Protocol for Group Gi)
1: Mapper Mj periodically computes and writes histogram pairs 〈ti,l, ci,l〉

to location Groupi/histogram/mapj in the DMDS.
2: Periodically, the coordinator reads the most recent histograms for Gi and

tries to compute a new global threshold using Algorithm 2.
3: If the coordinator computes a better global threshold for Gi, it writes it

to Groupi/threshold in the DMDS.
4: Mappers periodically update their local thresholds with the most recent

threshold from DMDS and start using it to filter local samples.

the coordination round for Gi fails: not enough data has been
scanned yet, or Gi contains less than k records. Finally, if
the coordinator produces a global threshold that is better (i.e.,
smaller) than the current last one, it notifies all mappers to
filter local samples with ŵi,(k). This protocol guarantees that
mappers will never receive an underestimated global threshold,
so that the synopsis will be exact.

2) Asynchronous Coordination: Although the foregoing
coordination protocol guarantees correctness, it relies heavily
on the synchronization barriers; as discussed previously, such
barriers usually do not work well in MapReduce. GARAM
therefore uses a fully asynchronous coordination protocol
(Protocol 1) that exploits the shared DMDS data structure from
Adaptive MapReduce that was introduced in Section II. All
of the mappers and the coordinator can read from and write
to the DMDS asynchronously. The DMDS has a hierarchical
data model, and stores a small amount of coordination state
per group.

Figure 3 shows the groupwise state information maintained
in the DMDS, as well as the data flow in the system. Each
numbered arrow corresponds to a step in Protocol 1. The
mapper maintains local records (with corresponding weights)
for each group as it reads and partitions input data. When the
mapper has seen a specified number of new records for a group,
called an update batch, it writes a histogram for the group in
the DMDS. Independently, the coordinator periodically reads
updated histograms and computes a new global threshold
estimate, which it also writes to the DMDS. In this way, each
mapper can contribute its information at its own speed, and the
coordinator produces a threshold based on the latest available
information, which is never required to be completely up to
date. Each mapper always has its own view of the global
threshold, which is also allowed to be outdated, i.e., out of
sync with the DMDS. If coordination and/or communication
of thresholds falls behind, the mapper can still make progress
filtering records with its most recent version of the threshold.
Observe that thresholds decrease monotonically, so that if a
mapper is lagging behind, its threshold is too large, which does
not impede correctness. Whenever a the mapper receives a new,
smaller threshold, it simply prunes its buffer as appropriate.

Note that, as the local threshold for a group decreases,
the histogram bin widths also decrease, so that the histogram
gives an increasingly accurate picture of the weight distribution
below the threshold. Also note that the coordinator does
not compute a global histogram of weights for a group:
only the frequencies of weights that lie below the current
global threshold are tracked, and the bin counts are based on
observations taken at different time points. Finally, note that
the mappers, which run Steps 1 and 4, and the coordinator,
which runs Steps 2 and 3, are completely independent of

Algorithm 2 (Pseudocode of the Coordinator)
1: while !allDone do
2: for each group Gi to be coordinated do
3: for each Mj message for Gi in DMDS do
4: if there is a previous proposal from Mj then
5: list[i].removeOld(j)
6: end if
7: list[i].addNew(j)
8: end for
9: thre← list[i].findThreshold()

10: if thre < lastThre[i] then
11: updateThre(i, thre)
12: end if
13: end for
14: end while

each other. They communicate through the histogram and
threshold locations in the DMDS; each of these locations
has exactly one writer and one reader.

The pseudocode for the coordinator algorithm is given
in Algorithm 2, and its communication with the DMDS is
shown by the dashed lines in Figure 3. Periodically, the co-
ordinator receives histogram buckets for Gi from mapper Mj

in the form of upper bin boundaries ti,l and corresponding
bin counts ci,l; the bin boundaries are candidates for the
next threshold estimate. The coordinator updates a list of
triples 〈ti,l, ci,l, j〉 by removing any previous buckets from Mj

(lines 4-6), and adding the new buckets to the list (line 7).
The list is kept sorted in increasing order of bin boundaries
to facilitate the subsequent findThreshold() operation in
line 9. This function scans the list in sorted order, starting
from the head, and computes a running sum Si of sample
counts ci,l. It stops scanning the list when Si ≥ k; all triplets
after this point in the list are removed and the ti,l in the last
retained triplet is returned as the putative updated threshold. If
findThreshold() is successful and the resulting threshold
is smaller than the last one, the coordinator updates the
threshold in the DMDS. However, if Si never reaches k, the
threshold is not updated, and GARAM will try to coordinate
Gi later.

It is important to note that the coordinator will post a
threshold only if it has guarantees from the mappers that they
already have at a total of least k records with weights less than
or equal to this threshold. Until the coordinator can prove this,
the mappers will use their local thresholds to filter samples.
In the unlikely event that the coordinator never produces a
threshold for a group, GARAM will degrade to running the
Buffered algorithm for this group. In any case, no record that
should appear in the final bottom-k synopsis will be filtered
by a mapper.

Example 2: For a given group, suppose that k = 5 and
b = 2, and that there are two mappers, M1 and M2 with
update-batch size equal to 10; i.e., the mappers communicate
after scanning every 10 records. Also suppose that the current
threshold is equal to 1.0 at both the coordinator and the
mappers, and that M1 sends the message 〈0.4, 3〉〈0.5, 2〉,
which means it has three records with weights up to 0.4
and two more with weights in (0.4, 0.5]. Sometime later, after
scanning its most recent batch of 10 records, M2 sends the
message 〈0.2, 3〉〈0.45, 2〉. Upon collecting both messages, the
coordinator has the list 〈0.2, 3, 2〉 → 〈0.4, 3, 1〉 → 〈0.45, 2, 2〉
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→ 〈0.5, 2, 1〉. It scans the list from left to right until the
cumulative sum S of the second field is at least k. The scanning
stops at the second triplet because S = 3 + 3 = 6 > k = 5.
Then 0.4, the first element in the second triplet, is the proposed
new global threshold; since 0.4 < 1.0, the proposal is
accepted, and the coordinator declares 0.4 as the threshold.
Once M1 receives this threshold it can prune its two local
records having weights greater than 0.4.

3) Implementation Details: We implemented the DMDS
on top of Apache ZooKeeper, which satisfied our require-
ments for performance, functionality, fault tolerance, and high
availability. Many other tools could also be used to implement
the shared data structure. Because the DMDS cannot execute
user code, GARAM’s coordinator component is run outside the
DMDS. To prevent the coordinator from becoming a bottle-
neck, especially when the number of groups to be coordinated
is large, GARAM distributes the coordination process by parti-
tioning the groups and dynamically assigning them to different
coordinators. Every map task of a GARAM Hadoop job runs
a coordinator thread, as well as a ZooKeeper client thread
that handles asynchronous communication with DMDS. In this
way GARAM can piggyback on Hadoop and ZooKeeper to
manage the coordinator processes and provide fault tolerance
for coordination. Specifically, in case of a task failure, Hadoop
restarts the task, including the coordinator thread. The new
coordinator finds all the state of its predecessor in ZooKeeper
and continues to execute the algorithm. This setup also allows
threshold updates to be pushed from the DMDS to the mappers
(Step 4 of Protocol 1), which improves performance.

As mentioned above, GARAM uses simple equi-depth
histograms to estimate thresholds; the benefits of using more
sophisticated histograms are far outweighed by the additional
costs incurred. To determine the value b for the number of
bins in the histograms, we ran some preliminary experiments
using b = 2, 10, 50, and 250 buckets per mapper. On
uniformly-sized groups the choice of b made no difference at
all. With heterogeneous group sizes there was a slight impact:
performance with b = 10 was about 5% faster than with b = 2,
and performance with b = 50 and b = 250 was very slightly
worse than with b = 10, though these latter differences were
pretty much at the noise level. Based on these results, we used
10 buckets per mapper throughout.

GARAM uses the same basic buffer management strategy
as for the Buffered algorithm (see Section V-A), spilling
records to the reducers whenever the record buffer fills up
but maintaining the metadata for the ejected groups, which
can still be used to prune future records and compute better
thresholds. As with Buffered, metadata is spilled, one group at
a time, as the metadata buffer fills up. In GARAM, however,
the most recent threshold for a group is kept when the group’s
metadata is spilled; in this case all weights are lost, however,
so it is very hard to further improve the threshold for the group.
Fortunately, our experiments indicated that spilling of metadata
is a very rare event. During the experiments described in
Section VIII, there was only one experiment (with a maximum
value of k and a maximum number of groups) where Buffered
spilled metadata. GARAM uses some additional methods to
control the buffer size, and consequently never spilled metadata
during the experiments. Specifically, if the buffers are in
danger of overflowing, GARAM heuristically increases the

communication rate in order to speed-up coordination and
prune down the buffers before they overflow. GARAM also
slows down the data scanning thread for a mapper to let the
coordination and filtering processes catch up.

The update-batch size is determined by the throughput
limit of the DMDS, which is the major source of coordination
overhead. Suppose this limit is Commrate messages per second.
For a given job that scans records at an aggregate rate of
Scanrate records per second, the minimum update-batch size
is Umin = nummsg · Scanrate/Commrate. The constant nummsg is
the average number of DMDS messages per update, which is
roughly 5 in our setting. For example, we measured Commrate
to be around 90K messages per second. With our 20 machines
the combined scan rate is about 2 GB/sec. On our dataset
it translates to Scanrate of about 500K records per second, so
Umin, in our experiments, is just under 30. Thus mappers should
not update DMDS more often than once every 30 records.
GARAM employs a heuristic that sets the first update-batch
size for each group to Umin records, and all the subsequent
ones to 5Umin unless the buffer size constraints force a lower
batch size as described above.

Note that, depending on the update-batch size and other
factors, it is possible for one or more groups to never communi-
cate with the coordinator and hence never filter out any records.
In this case the MHD algorithm of Section VI-A can be run
on the set of unfiltered groups at the end of the map process;
in this setting the number of unfiltered groups is usually very
small so that the “straggler effect” is not too severe.

4) Other Features of GARAM: Besides superior perfor-
mance (as indicated by our experiments), GARAM has a
number of additional features that make it more attractive than
other MapReduce sampling approaches.

Pause-resume GARAM can be easily controlled to sus-
pend processing if, for example, a higher priority user needs to
utilize the MapReduce cluster. Adaptive Mappers can be short
circuited not to process any more splits, so Hadoop will believe
that the job is complete and send all mapper output to reducers.
When a job has been stopped in this manner, GARAM can
still maintain its state in the DMDS. This includes a list of
all splits that have been processed by the job. Given this state,
the Adaptive Mappers can restart processing where they left
off, using the most recent threshold per group. The code for
a reducer needs only a trivial change to let the reducer read
back its output file from the stopped job and append these
records and their weights to the reduce function input. The
reduce function itself remains the same.

Incremental Maintenance of Synopses The foregoing
pause-resume mechanism can be used to incrementally main-
tain a stratified synopsis as new partitions are appended to the
dataset. An incremental GSVA job Ji needs to know the ID
of the previous GSVA job Jp that ran on the same dataset.
Job Ji locates the data structures that Jp left in the DMDS,
so that it can start with the latest available set of thresholds.
The reducers of Ji also read the corresponding partition of the
synopsis that Jp produced.

Stratified online aggregation The pause-resume capabil-
ity can also be used to support a stratified form of online
aggregation [17], [22]. Indeed, the Adaptive Mappers process
blocks of records in random order. Thus, if GARAM is used
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for stratified sampling and processing is stopped at some point,
then there are no partially scanned blocks, and the GARAM
sample is a true record-level stratified random sample of the
set of blocks scanned so far; this set is representative of the
entire data set because blocks are scanned in random order. It
is therefore possible in principle to abort processing as soon
as the samples are “good enough,” either in themselves or
with respect to the accuracy of an aggregation query or other
analysis that is being performed over the samples. We intend
to investigate this functionality in future work.

Overlapping Groups GARAM supports overlapping
groups, i.e. extracting multiple keys from a record and sending
the record to multiple buffers without duplicating it in memory.
This feature is useful for running multiple GSVA queries
concurrently while scanning the dataset only once. This feature
also handles semi-clustering algorithms that potentially assign
a record to more than one group.

Fault tolerance GARAM relies on MapReduce, a fault-
tolerant DMDS (in our case, backed by ZooKeeper) and,
in the case of stratified sampling, a PRNG to gracefully
handle task and node failures. Recall that the PRNG generates
disjoint substreams of independent pseudorandom numbers,
where each sub-stream corresponds to a data split. For each
split, the PRNG uses a seed that is tied to the split’s id. Thus
rerunning a task will always produce the same weight for the
same record, which lets the Adaptive Mappers ensure that a
task failure does not affect the final output.

VII. TOP-R STRATIFIED SAMPLING

In this section we discuss queries that return a uniform
random sample of size k for each of the r largest groups in
the set G = {G1, . . . , Gg } of all groups. A straightforward
implementation of top-k stratified sampling uses GARAM to
compute a size-k sample for each of the g groups, computing
the size ni of each group Gi as a by-product. Then only the
samples corresponding to the r largest groups are retained.
This solution is wasteful, however, because every sample not
belonging to the r largest groups is shuffled across the network.
This wasted shuffling effort is especially severe when, as is
often the case, the data has a “long tail” so that r � g and
each group has at least k elements.

Our top-r stratified sampling algorithm, called GARAM-
TrSS, combines GARAM with the approximate thresholding
technique in Section V-B. The key idea is to identify the
top-r groups as early as possible and prune the remaining
groups aggressively in the map phase. Specifically, GARAM-
TrSS maintains a running estimate T̂ of the true set T of
top-r groups; i.e. T̂ is based on the data seen so far. Our
implementation uses the efficient distributed top-r monitoring
algorithm proposed by Babcock and Olston [23]. The algo-
rithm also maintains for each group Gi the number n∗i of
records scanned so far. Thus, if we order these counts as
n∗[1] > n∗[2] > · · · > n∗[g], then T̂ = {G[1], . . . , G[r] }. At
a given time during the map phase, let q∗ε be the unique
solution of Beta(q; k, n∗[r] − k + 1) = 1 − ε, where ε is a
small user-specified error tolerance. In GARAM-TrSS, each
group initially uses standard GARAM to maintain a size-
k sample, and then follows Protocol 2. In the protocol, the
current threshold for a mapper is the smallest threshold seen

Protocol 2 (Top-r Stratified Sampling for Group Gi)
1: If Gi ∈ T̂ , each mapper maintains a Gi sample using the threshold

sequence generated by standard GARAM
2: If Gi ∈ G \ T̂ , each mapper maintains a Gi sample using a sequence

of periodically updated q∗ε values together with the standard GARAM
threshold sequence

so far (and thus only changes when a newly proposed threshold
is smaller than the current threshold).

Observe that the threshold q∗ε is based on the sizes of all
the groups, and usually is relatively tight for any given non-
top-r group. To see that this protocol yields approximately the
desired sample, first note that, if a top-r group Gi ∈ T remains
in T̂ throughout the map stage, then use of standard GARAM
ensures a size-k sample. A non-top-r group Gi ∈ G \ T will
usually be effectively pruned by use of the q∗ε threshold (and
any surviving records will be eliminated at the reducers). The
potentially problematic case concerns a top-r group Gi ∈ T
that enters G\T̂ one or more times during processing and hence
for certain time periods may be pruned using q∗ε thresholds, and
not just the standard GARAM thresholds (which will typically
be larger). The bottom-k sampling mechanism will always
produce a statistically correct sample, but there is a risk that
the final sample size will be less than k. The following result
shows, however, that with high probability q∗ε will exceed the
global threshold wi,(k) at all times, so that use of q∗ε will not
lead to over-pruning.

Consider a group Gi ∈ T and denote by Ai the event
that Gi ∈ G \ T̂ at least once during the map phase. When
Ai occurs, denote by { q∗ε,l }l≥1 the sequence of q-thresholds
used for Gi, with corresponding n∗[r] values {n∗[r],l }l≥1.

Theorem 2: P (wi,(k) > minl q
∗
ε,l | Ai) < ε.

Proof: Denote by n[r] the true size of the smallest group
in T . Observe that ni ≥ n[r] since Gi ∈ T and that, for all
sample paths in Ai, the sequence {n∗[r],l }l≥1 is non-decreasing
with maxl n

∗
[r],l ≤ n[r]. The function Beta(x; k, n− k + 1) is

non-decreasing in n for any fixed x ∈ (0, 1) and k ≥ 1, where
n ≥ k; see, e.g., [21, p. 90]. It follows that minl q

∗
ε,l ≥ qε on

Ai, where qε is the unique solution to Beta(q; k, n[r]−k+1) =
1− ε. Using (1), we have

P (wi,(k) > min
l
q∗ε,l | Ai) ≤ P (wi,(k) > qε | Ai)

= 1− Beta(qε; k, ni − k + 1)

≤ 1− Beta(qε; k, n[r] − k + 1) = ε,

where the second inequality again follows from [21, p. 90].

VIII. EXPERIMENTS

For our experimental evaluation we focused on the applica-
tion of GARAM to stratified sampling, that is, the weights are
uniform random numbers in [0, 1]. We compared the various
methods and studied the impact on relative performance of two
key factors: the number of groups g and the sample size k per
group.

Specifically, we considered stratified sampling of the
largest table of the publicly available SkyServer dataset2. The

2http://cas.sdss.org
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Fig. 4. Running time of GARAM, Vanilla, and Buffered algorithms.
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Fig. 5. Shuffle size (log scale) of GARAM, Vanilla, and Buffered algorithms.

table has 245 columns and 586 million records. We stored this
data as a 2.45 TB text file in the Hadoop distributed file system
(HDFS) running on our cluster.

Many columns of this table have non-uniform value distri-
butions, which facilitated our evaluation. In particular, one set
of experiments constructed a stratum for each distinct value
of one column. We used three columns with 362, 854, and
13961 distinct values respectively. The distribution of stratum
sizes was significantly skewed in these three cases. We also ran
experiments where 400, 2000, or 10000 uniform strata were
constructed by hash-partitioning the table.

The cluster has 12 nodes, each with one 12-core Intel Xeon
CPU E5-2430 64-bit 2.20GHz processor, 96GB RAM, and 12
SATA disks. The nodes are connected by 10Gbs Ethernet. We
used Hadoop version 1.1.2. Two nodes were reserved to run the
Hadoop JobTracker/the NameNode for HDFS, and ZooKeeper
server for DMDS respectively. The other 10 nodes ran the
worker daemons. Each worker was configured with 8 map
slots and 4 reduce slots. Thus, each worker node ran up to 12
concurrent tasks, and so we set each task’s memory allocation
to 7 GB.

We compared our GARAM implementation with the
Vanilla and Buffered MapReduce approaches described in
Secs. IV and V-A. We also implemented the TW algorithm [3]
described in Sec. I, but it turned out not to be competitive.
TW requires a relatively large number of very expensive
synchronous communications. In our tests on a scaled-down
dataset, this implementation was always significantly slower

than the other approaches, and on the full dataset we had to
cancel the job after it ran for an hour and processed only about
2% of the data.

A. Performance of Vanilla and Buffered

Recall that the Vanilla algorithm uses mappers to extract
the grouping (i.e. strata) keys and shuffle all records of a given
group to a single reducer. The reducer tasks then perform
the sampling. This approach has very stable, albeit very poor
performance, as it requires shuffling (i.e. repartitioning) of the
entire data set to obtain the samples. Figure 4 shows that,
on a 10-node cluster, Vanilla always completed in around 70
minutes, irrespective of the desired sample size k and number
of groups g.

As discussed previously, the Buffered algorithm maintains
a list of up to k samples per group locally in mapper memory.
If the buffers are large enough to hold all of the groups, then
every mapper outputs up to k records per group, along with
their weights, and the reducers output the exact overall sample
of k records per group. As long as every map task scans more
than gk records, Buffered shuffles less data than Vanilla. Recall
that Buffered uses Adaptive Mappers (with one task per slot
versus one task per HDFS block); for example, in Figure 4,
Buffered always ran 80 map tasks. We could have achieved
the same number of tasks in standard Hadoop by setting the
appropriate data partition (split) size, but the adaptive approach
yields much better data locality and avoids load balancing
problems associated with using very large splits.
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Fig. 6. Running time and Shuffle size (log scale) of GARAM and top-r
stratified sampling

Buffered performs best when the entire local sample (of
roughly gk records) fits in the buffer. In our experiments, the
size of each buffer was 5GB. Buffering is done very carefully
to minimize Java object overhead and avoid expensive creation
and garbage collection of many small objects. Nevertheless,
as the product gk scaled up past the size of the buffer—in
our case the 5GB buffer can fit around 1 million records—
the performance of Buffered degraded very rapidly. It actually
performed worse than Vanilla because it used much more
memory, so that less file-system cache was available for the
external sorting used in MapReduce. Even when the samples
fit into the buffers, data shuffling costs were often problematic.
For example, as shown in Figure 5, when k = 1000 and
g = 400, there is enough local memory to buffer the entire
local sample of 400 K records but, once each of the 80
mappers produces such a sample, the reducers need to shuffle
over 160 GB of map outputs, which is wasteful and degrades
performance.

B. Performance of GARAM

GARAM uses the same buffering and local aggregation
code as Buffered, but its performance degrades much less.
By using the coordination protocol, GARAM can prune local
samples much more aggressively and hence buffer many fewer
records. Indeed, GARAM only needs to buffer approximately
gk records across all workers, whereas Buffered needs to
buffer approximately gk records per worker. This difference is
apparent from Figure 5: GARAM shuffles about 100 times less
data than Buffered for the uniform groups when k = 10 or 100
and g = 400 or 2000. This improvement factor corresponds to
the 80 mappers used in the experiments.

GARAM is designed to scale well with the dataset and
cluster size, however its current implementation is limited in
the number of groups it can coordinate, due to limitations of
the current DMDS, as discussed in Sec. VI-B3. This explains
its performance degradation as the number of groups increases,
especially for skewed data distributions, where buffers for
some groups can fill up very quickly. However, analysts rarely
look at a large number of strata. They are more likely to focus
on a smaller set of the largest groups, which can be done by
the top-r stratified sampling algorithm that we evaluate next.

C. Performance of Top-r Stratified Sampling

We focus on the cases where GARAM performance de-
graded when it produced large samples (k=1000) for many
non-uniform groups. Figure 6 shows performance of top-10
stratified sampling for both uniform and skewed strata, com-
pared against GARAM. Top-r stratified sampling significantly
outperforms GARAM in the case of 13961 strata, i.e., top-r
stratified sampling shuffles 20x less data, and runs 2x faster
than GARAM, because it is able to focus on the largest groups
and coordinate their thresholds quickly enough to keep up with
the scan rate. In the less skewed case (e.g., 854 strata), top-
r stratified sampling does not improve much over GARAM,
because it only shuffles slightly less data than GARAM. It
is worth noting, however, that the duration of top-r stratified
sampling is still less than that of GARAM. Thus, although
the top-r stratified sampling algorithm needs to maintain the
running top strata and conduct extra thresholding, it introduces
little overhead compared to GARAM.

IX. CONCLUSIONS

We have shown how extending a MapReduce shared-
nothing framework to allow limited coordination between map
tasks can dramatically improve performance for an important
class of queries over massive disk-resident data sets—namely,
groupwise set-valued analytics (GSVA) queries—while pre-
serving the key advantages of the MapReduce framework.
Specifically, we have introduced GARAM, a novel technique
for processing GSVA queries in MapReduce environments. We
also presented its specialization for stratified sampling of the
largest groups. In both cases, the sparing use of a small shared
data structure, implemented using the Adaptive MapReduce
infrastructure, allows mappers to jointly estimate adaptive
thresholds for more effective pruning of records, thereby
reducing buffer space requirements and avoiding expensive
and wasteful data shuffling. Extensive experiments using real
datasets showed speedups of up to 5x, which indicates that our
new techniques can facilitate exploratory analysis of massive
data. Our techniques can potentially be applied in other shared-
nothing systems for disk-resident data; such extensions are a
topic for future research.
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APPENDIX: PROOF OF THEOREM 1

Observe that the first k pairs are inserted into the priority
queue (line 8) and each such insertion has a cost of O(log k),
for an overall cost of O(k log k). Each subsequent pair incurs
an O(log k) cost if it is inserted (line 10), or an O(1) cost
otherwise. The ith new pair (i > k) is inserted only if Π(i) <
Mi, where Mi = max{ j : (rj , wj) ∈ Li } and Li denotes
the list L just before processing the ith pair. Straightforward
combinatorial arguments show that

P
(
Π(i) < Mi,Mi = m

)
= (m− 1)

(
m− 2

k − 1

)(
n−m
i− k − 1

)
(i− 1)!(n− i)!

n!

=
k

i

(
n

i

)−1(
m− 1

k

)(
n−m
i− k − 1

)
.

for m ≥ k and P
(
Π(i) < Mi,Mi = m

)
≤ P (Mi = m) =

0 for m < k. Following the usual convention that
(
k
l

)
= 0

whenever k < l, we have

P
(
Π(i) < Mi

)
=

n∑
m=k

P
(
Π(i) < Mi,Mi = m

)
=
k

i

(
n

i

)−1 n∑
m=1

(
m− 1

k

)(
n−m
i− k − 1

)

=
k

i

(
n

i

)−1 n−1∑
m=0

(
m

k

)(
n−m− 1

i− k − 1

)
=
k

i
,

where we have used the identity [24, p. 169]
n∑

m=0

(
m

k

)(
n−m
i− k

)
=

(
n+ 1

i+ 1

)
.

We now proceed similarly to the proof of Theorem 1 in [15]:
since

∑n
i=1(1/i) = O(log n), the expected cost for handling

the remaining n− k pairs is

E[Cost] =
n∑

i=k+1

[
(k/i)O(log k) +

(
1− (k/i)

)
O(1)

]
<

n∑
i=1

[
(k/i)O(log k)

]
+O(n)

= O(k log k)
n∑
i=1

(1/i) +O(n)

= O(n+ k log k log n).

The overall expected cost is thus O(n + k log k +
k log k log n) = O(n + k log k log n). The upper and lower
bounds are obtained by considering the scenarios in which
the pairs are processed in order of descending and ascending
weights, respectively.
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