
Grosbeak: A Data Warehouse Supporting
Resource-Aware Incremental Computing

Zuozhi Wang†, Kai Zeng‡, Botong Huang‡, Wei Chen‡, Xiaozong Cui‡, Bo Wang‡,
Ji Liu‡, Liya Fan‡, Dachuan Qu‡, Zhenyu Hou‡, Tao Guan‡,

Chen Li†, Jingren Zhou‡
†{zuozhiw, chenli}@ics.uci.edu, ‡{zengkai.zk, botong.huang, wickeychen.cw, xiaozong.cxz, yanyu.wb, niki.lj,

liya.fly, dachuan.qdc, zhenyuhou.hzy, tony.guan, jingren.zhou}@alibaba-inc.com
†UC Irvine, ‡Alibaba Group

ABSTRACT
As the primary approach to deriving decision-support in-
sights, automated recurring routine analytic jobs account
for a major part of cluster resource usages in modern enter-
prise data warehouses. These recurring routine jobs usually
have stringent schedule and deadline determined by external
business logic, and thus cause dreadful resource skew and
severe resource over-provision in the cluster. In this paper,
we present Grosbeak, a novel data warehouse that supports
resource-aware incremental computing to process recurring
routine jobs, smooths the resource skew, and optimizes the
resource usage. Unlike batch processing in traditional data
warehouses, Grosbeak leverages the fact that data is contin-
uously ingested. It breaks an analysis job into small batches
that incrementally process the progressively available data,
and schedules these small-batch jobs intelligently when the
cluster has free resources. In this demonstration, we show-
case Grosbeak using real-world analysis pipelines. Users can
interact with the data warehouse by registering recurring
queries and observing the incremental scheduling behavior
and smoothed resource usage pattern.

ACM Reference Format:
Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui,
Bo Wang, Ji Liu, Liya Fan, Dachuan Qu, Zhenyu Hou, Tao Guan,
Chen Li, Jingren Zhou. 2020. Grosbeak: A Data Warehouse Sup-
porting Resource-Aware Incremental Computing. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384708

Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.3384708

1 INTRODUCTION
Cloud-scale data warehouses are one of the keystone sys-
tems of a modern enterprise’s big data infrastructure. They
serve a mixed workload of recurring routine analytic jobs
and ad-hoc analytic queries. As a primary approach to de-
riving decision-support insights, recurring routine analytic
jobs account for a majority of cluster resource usages. For in-
stance, from our observation of a data warehouse at Alibaba,
up to 65% of daily workload is recurring analytic jobs. These
jobs have a stringent schedule and deadline determined by
various business logic. They also have similar schedules, thus
causing dreadful “rush hour” schedule patterns in the clus-
ter. Figure 1 shows a cluster resource usage pattern from a
real traditional data warehouse environment in Alibaba. A
majority of daily analysis queries starts after 2AM every day
when the previous day’s data has been fully collected. The
peek usage lasts until 6AM, which is the deadline required
by the business logic. During the day, there are only a few
occasional spikes due to ad-hoc queries. This resource skew
leads to a over-provision of resources to guarantee the peak
resource usage, but leaves the cluster under utilized off traffic
hours, causing excessive waste of resources.

Figure 1: Timeline of running a pipeline of two
queries in a traditional warehouse vs in Grosbeak

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2797

https://doi.org/10.1145/3318464.3384708
https://doi.org/10.1145/3318464.3384708

To solve this problem, we have developed Grosbeak, a data
warehouse that can automatically optimize the resource us-
age patterns of the underlying cluster. Specifically, Grosbeak
focuses on optimizing the resource-usage pattern of recur-
ring routine analytic jobs. Traditional data warehouses pre-
dominately handle automated routine analysis using batch
query processing, and schedule them strictly at the time
when all the input data is available. In contrast, Grosbeak
leverages the fact that the analyzed data is continuously col-
lected and ingested, and breaks an analysis job into small
batches that incrementally process the progressively avail-
able data. These incremental jobs can be scheduled as part
of the data becomes available, and can be adapted according
to the real-time resource usage in the cluster.
To illustrate how recurring routine analytical jobs are

executed in Grosbeak, let us consider an analytic pipeline
where a query Q1 computes on ingested data, whose output
is in turn used by another query Q2. Figure 1 illustrates
how the pipeline is executed in a traditional data warehouse
and in Grosbeak on a timeline. Traditionally, as the data is
constantly ingested, the system cannot compute Q1 and Q2,
even though the cluster has available capacities. Differently,
Grosbeak can start computing Q1 when part of Q1’s input
data is available, and the cluster has available capacities
(at 10am, 12pm, 18pm etc. of a day). Each execution can
resume from the work left by the previous one, and the final
execution at 12am of day2 finishes much faster. Furthermore,
the early outputs of Q1 in turn enable Q2 to execute early.
It is worth noting that dynamic scheduling in Grosbeak

is very different from previous incremental computation
paradigms, such as stream computing [2], incremental view
maintenance [3] (IVM), etc. First, Grosbeak does not have
a fixed triggering period. The scheduler can delay sched-
uling incremental computation if the cluster is overloaded
by foreground ad-hoc workloads. In contrast, traditional
IVM usually has to trigger incremental computation imme-
diately to make sure its view is always up-to-date. Second,
in between the incremental computation in Grosbeak, the
recurring routine jobs do not occupy any cluster resources,
and thus have much lower resource consumption. It is very
different from paradigms such as stream computing, which
has to keep the jobs online in order to process continuously
arriving data. Third, the incremental execution in Grosbeak
can be fully automated. Users do not need to manually con-
vert their batch SQL queries into a streaming version. In
addition, the data warehouse can search an optimal incre-
mental plan from many incremental computing techniques,
such as higher-order IVM etc. [1, 4] in a cost-based manner.

In this demonstration, we showcase Grosbeak using real-
world analysis pipelines. Users can interact with the data
warehouse by registering recurring queries, specifying hints
for scheduling incremental processing, and observing the

Figure 2: System architecture and job lifecycle

incremental scheduling behavior and the smoothed resource
usage pattern in Grosbeak.

2 GROSBEAK SYSTEM OVERVIEW
Figure 2 shows the architecture of Grosbeak and the lifecy-
cle of a job processed by the system. A user first registers a
recurrent query on the Job Manager (step 1), including the
query dependency in a pipeline and the deadline to produce
the final result. The user can also specify a scheduling policy,
such as triggering an execution when the cumulative input
data passes a threshold. The user can also let Grosbeak au-
tomatically decide execution schedules. The Job Manager
manages the whole query lifecycle and hosts the applica-
tion UI. The query information is then passed to the Cluster
Scheduler (step 3). The Cluster Scheduler generates a tentative
schedule and invokes the Progressive-Plan Optimizer named
Beanstalk (step 4), which uses cost-based optimization to
generate a progressive plan (step 5). The plan consists of a
sequence of physical execution plans to be executed at the
scheduled times. The Cluster Scheduler starts monitoring the
cluster resource usage (step 6) and data arrival for this query
(step 7) in order to trigger the execution based on the cluster
resource usage and user-provided scheduling policy. When
an execution is triggered, the Cluster Scheduler submits the
physical plan to the Execution Engine (step 8), which loads the
previous intermediate states from the Grosbeak State Store
(step 9), performs the incremental computation, and saves
the new states (step 10). The State Store is a layered storage
module that can intelligently choose a storage medium to
keep the data, ranging from in-memory cache, SSD, to hard
disks. This execution process (steps 8 - 10) repeats during the
lifecycle of the job. The process ends when all the data has

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2798

arrived, the last job finishes execution, and the final result is
delivered back to the user (step 11).
When a job is initially submitted, the cluster scheduler

proposes a tentative schedule {t0, t1, . . . , t∗} and the opti-
mizer generates corresponding progressive execution plans
{P0, P1, . . . , P∗}. This scheduling decision is based on histor-
ical information and future predictions. During the lifecycle
of the job, the cluster environment might change, causing
the tentative schedule to be less ideal. Grosbeak supports
dynamic re-planning to handle such situations. For example,
if the cluster scheduler notices that the resource usage is
high at an originally scheduled time, it will delay the ex-
ecution and wait for the resource utilization to drop. The
user could also manually set a new scheduling policy. When
the Cluster Scheduler decides a new execution schedule, it
repeats steps 4 and 5 to invoke the optimizer to perform
re-optimization. The progressive scheduler produces a new
plan by jointly considering the old partially executed plan,
existing intermediate states, new schedule, and updated sta-
tistics. Specifically, users can specify the desired trigger time
points, e.g., (12AM, 18PM, and 22PM), or a trigger condi-
tion, e.g., when the amount of accumulated data is beyond a
threshold. Such hints can let users fine-tune the scheduling
decisions based on external knowledge.

3 QUERY COMPILATION
Grosbeak uses a cost-based optimizer called “Beantalk” [5]
that can jointly consider (1) various incremental view main-
tenance techniques, (2) the statistics of available data, (3) the
current cluster resources, and (4) the intermediate states from
the previous runs and the schedules of the incremental jobs
in the future. In this section, we present Grosbeak’s compila-
tion technique through an example, illustrate the plan space
of various ways of incremental processing, and demonstrate
the cost trade-off. We propose a general framework based
on a model called “time-varying relation (TVR) model”, in
which we treat changing data as a relation varying with
time. By explicitly modeling snapshots and delta views of a
TVR, we can unify various incremental computation models.
We elaborate the complexity of progressive query planning
using an example analytic pipeline in Fig. 3(a), which com-
putes the gross revenue of all orders by consolidating the
sales orders with the returned ones. Suppose we are given a
schedule S with two times t1 and t2, where t2 is the specified
execution time of both queries in the workflow, and t1 is an
early execution time. The data records visible at t1 and t2 in
sales and returns are those in Fig. 3(b).
Classic incremental view maintenance. This approach
treats sales_status and summary as views, and uses incre-
mental computation to keep the views always up to date
with respect to the data seen so far. At time t1, it computes

the left outer join using the snapshot at t1 of sales and returns
to generate a view sales_status, then applies aggregation on
the join result to generate a view summary. At time t2, in-
stead of recomputing from scratch, it uses the delta input
to incrementally compute the result. It first computes the
delta of the left outer join by using the snapshot at t1 and
delta(t1-t2) of sales and returns, then performs aggregation
on join’s delta outputs. The delta outputs are merged with
previous snapshots to update the two views. The delta in-
put to sales at t2 includes tuples {o5,o6,o7}. Fig. 3(c) depicts
sales_status’s delta outputs at t1 and t2, respectively, where
= +/−1 denotes insertion or deletion, respectively. Note
that a returns record (e.g., r2 at t2) can arrive much later than
its corresponding order (e.g., the shaded o2 at t1). Therefore,
an order record may be output early as it cannot join with a
returns record at t1, but retracted later at t2 when the returns
record arrives, such as tuple o2 of sales_status at t2 in Fig. 3(c).
Non-retractable incremental computation.The approach
avoids retractions in incremental computation. Specifically,
in the outer join of sales_status, tuples in sales that do not
join with tuples from returns at t1 (o2, o3, and o4) may join
in the future, and thus will be held back. At time t1, it only
computes the inner join on snapshot(t1) of sales and returns
and applies the aggregation. The computation of left anti
join is skipped because it produces outputs that could pos-
sibly be retracted. At time t2, it first computes the delta of
sales ▷◁ returns and incrementally computes the aggregation.
Because t2 is the last execution time and all data has arrived,
γ (sales ▷◁la returns) can be computed, then merged with the
inner join aggregation result to produce the final output.

The optimal progressive plan is data dependent, and should
be determined in a cost-based way. In this example, the
classic IVM approach computes 9 tuples (5 tuples in the
outer join and 4 tuples in the aggregate) at t1, and 10 tuples
at t2. Suppose the cost per unit at t1 is 0.2 (due to fewer
queries), and the cost per unit at t2 is 1. Then its total cost
is 9 × 0.2 + 10 × 1 = 11.8. The non-retractable incremental
computing approach computes 6 tuples at t1, and 11 tuples
at t2, with a total cost of 6 × 0.2 + 11 × 1 = 12.2. On the
contrary, if the retraction is often, say, with one more or-
der tuple o4 at t2, then the stream computing approach will
become more efficient, as it costs 12.2 versus the cost 13.8
of the first approach. The reason is that retraction wastes
earlier computation and causes more re-computation. Notice
that the performance difference of the two approaches can
be arbitrarily large.

4 DEMONSTRATION SCENARIO
This demonstration will allow the audience to interact with
Grosbeak using a variety of data sets and queries, such as
those from the TPC-DS benchmark.Wewill also provide data

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2799

(a)

sales
o_id cat price
o1 c1 100 t1
o2 c2 150 t1
o3 c1 120 t1
o4 c1 170 t1
o5 c2 300 t2
o6 c1 150 t2
o7 c2 220 t2
returns

o_id cost
o1 10 t1
o2 20 t2
o6 15 t2

(b)

sale_status at t1
o_id cat price cost
o1 c1 100 10
o2 c2 150 null
o3 c1 120 null
o4 c1 170 null

sale_status at t2
o_id cat price cost #
o2 c2 150 null −1
o2 c2 150 20 +1
o5 c2 300 null +1
o6 c1 150 15 +1
o7 c2 220 null +1

(c)

sale_status at t1
o_id cat price cost
o1 c1 100 10

sale_status at t2
o_id cat price cost #
o2 c2 150 20 +1
o3 c1 120 null +1
o4 c1 170 null +1
o5 c2 300 null +1
o6 c1 150 15 +1
o7 c2 220 null +1

(d)

Figure 3: (a) A simple analytic pipeline; (b) data-arrival patterns of sales and returns; (c) results of sales_status
produced by IVM at t1 and t2; and (d) results of sales_status produced by non-retractable computing at t1 and t2.

sets and query workloads that closely resemble the business
analytics jobs in Alibaba.
Generating reports for an online retailing business.We
demonstrate a real use case of Grosbeak in an online retail-
ing business, which involves processing of orders, payment,
and logistics data to generate daily reports. Such reports
are crucial to supporting business intelligence and decision
making. Data is continuously ingested into the warehouse
by synchronizing with the online OLTP database change log
every 15 minutes. One example application is to generate
shipping status of all orders placed in a day. The query uses
a left outer join of orders with logistics on the order_id at-
tribute. Left outer join is used because only orders that are
shipped out on the same day as they are placed can success-
fully join. An orders record is inserted immediately after an
order is placed, but a logistics record is only created after a
tracking number is available. In this case, Grosbeak can intel-
ligently choose the non-retractable incremental computation
approach described in Section 3 to avoid a lot of retractions.
Another interesting characteristic of this workload is that
most of the data arrival happens during the day, which does
not coincide with the peak hours (2AM - 6AM) of the cluster.
Grosbeak is able to choose an execution schedule without
accumulating too much data.
Monitoring status on application dashboard. Grosbeak
provides an application UI that helps users understand the
progressive plans and monitor the status of the job lifecycle.
Figure 4 shows a query dependency graph consisting of
four queries. The user can see each query with two or three
scheduled executions and the start and finish times of each
execution. The user can further click each job to inspect the
job detail, including the physical plan at each time point, the
intermediate states saved by each job, and the early outputs
to downstream queries in the pipeline. When the scheduler
triggers a job, the UI updates the run-time execution detail of
each job. The user can inspect the current execution status
of the query, including the amount of early data processed
and the amount of early outputs to downstream queries.

Figure 4: Application UI in Grosbeak

REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

Dbtoaster: Higher-order delta processing for dynamic, frequently fresh
views. PVLDB 5, 10 (2012), 968–979.

[2] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL
continuous query language: semantic foundations and query execution.
The VLDB Journal 15, 2 (2006), 121–142.

[3] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and
Kyuseok Shim. 1995. Optimizing Queries with Materialized Views.
In Proceedings of the Eleventh International Conference on Data Engineer-
ing (ICDE ’95). IEEE Computer Society, Washington, DC, USA, 190–200.
http://dl.acm.org/citation.cfm?id=645480.655434

[4] Per-Åke Larson and Jingren Zhou. 2007. Efficient Maintenance of
Materialized Outer-Join Views. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul,
Turkey, April 15-20, 2007. 56–65. https://doi.org/10.1109/ICDE.2007.
367851

[5] Planning Progressive Execution: Resource Smoothing in Cloud-Scale
Data Warehouses [n. d.]. Technical Report, https://kai-zeng.github.io/
papers/beanstalk-tech-report.pdf.

Demonstrations SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2800

http://dl.acm.org/citation.cfm?id=645480.655434
https://doi.org/10.1109/ICDE.2007.367851
https://doi.org/10.1109/ICDE.2007.367851
https://kai-zeng.github.io/papers/beanstalk-tech-report.pdf
https://kai-zeng.github.io/papers/beanstalk-tech-report.pdf

	Abstract
	1 Introduction
	2 Grosbeak System Overview
	3 Query Compilation
	4 Demonstration Scenario
	References

