DeepQT : Learning Sequential Context for
Query Execution Time Prediction

Jingxiong Ni', Yan Zhao?, Kai Zeng®, Han Su', and Kai Zheng!”

! University of Electronic Science and Technology of China, Chengdu, China
nijingxiong@std.uestc.edu.cn, {hansu,zhengkai}@uestc.edu.cn
2 School of Computer Science and Technology, Soochow University, Suzhou, China
zhaoyan@suda.edu.cn
3 Alibaba Group, HangZhou, China
zengkai.zk@alibaba-inc.com

Abstract. Query Execution Time Prediction is an important and chal-
lenging problem in the database management system. It is even more
critical for a distributed database system to effectively schedule the query
jobs in order to maximize the resource utilization and minimize the wait-
ing time of users based on the query execution time prediction. While
a number of works have explored this problem, they mostly ignore the
sequential context of query jobs, which may affect the performance of
prediction significantly. In this work, we propose a novel Deep learn-
ing framework for Query execution Time prediction, called DeepQT, in
which the sequential context of a query job and other features at the
same time are learned to improve the performance of prediction through
jointly training a recurrent neural network and a deep feed-forward net-
work. The results of the experiments conducted on two datasets of a
commercial distributed computing platform demonstrate the superiority
of our proposed approach.

Keywords: Deep Learning - Query-time Prediction - Distributed Database
- Jointly Training.

1 Introduction

Modern database management can greatly benefit from the prediction of query
execution time, which aims to predict the time between the start of a SQL query
job in database management and the end of the job. The prediction of query
time is an important research topic and can be used in many scenarios, such as
admission control decisions [23], query scheduling decisions [6], query monitor-
ing [19], system sizing [25], and so forth. Within the generation of distributed
computing platforms such as MaxCompute developed by Alibaba, we can ob-
tain high volumes of information about users’ query jobs which contains different
SQL statement, query execution plans, and job configurations. Based on these

* Corresponding author: Kai Zheng.



2 J. Ni et al.

historical data, it is possible for us to make an accurate prediction about query
execution time using deep neural networks.

In existing works, query time prediction problem is conventionally tackled
by cost-based analytical modeling approach [27] or traditional machine learning
techniques, such as Multiple Linear Regression (MLR) [2] and Support Vector
Regression (SVR) [24]. While the cost-based analytical modeling approaches
are good at comparing the costs of alternative query execution plans, they are
poor predictors of query execution time, especially in the commercial distributed
database management where there are more sophisticated factors to consider
and less information about the query execution cost than centralized database
management. As for the previous works using traditional machine learning tech-
niques, there are two limitations. First, due to the lack of real-world data, the
training data used in previous work is generated by a small amount of bench-
mark query statement like TPC-H, ignoring the complexity and diversity of
users’ real queries. Second, traditional machine learning techniques lack the abil-
ity to model complex patterns in a large amount of real-world data. Moreover,
most of the previous works take the number of operators in the execution plan
as the input feature without considering the order and dependency between the
operators in query execution plan. However, such information in query jobs can
greatly affect the query execution time.

In this paper, we take the order and strong dependency between operators
in a query’s execution plan into consideration. Figure 1 presents an example of
query execution plan, which can be expressed as sequences after topologically
sorting. Thus, we model the query execution plan as a sequential context to learn
the information in the order and dependency between operators. In addition,
since the number of operators in a query execution plan is not known, the length
of the execution plan topology is not available in advance as well. Therefore we
adopt a Recurrent Neural Network (RNN) in modeling the sequential context of
a user’s query job, because RNN has the powerful ability to handle sequential
data whose length is not known beforehand and has superiority in encoding
dependencies [21].

In addition to the query execution plan, we can extract many critical features
from the job configuration generated by the query optimizer, such as PlanMem,
PlanCpu (see Table 1) and so on. We leverage the Deep Neural Networks (DNN)
to learn the information provided by these features. DNN has been successfully
applied to various difficult problems and has achieved excellent performance, due
to its ability to perform arbitrary parallel computation for a modest number of
steps.

In summary, RNN is good at learning the sequential features, and DNN has
the superior performance in learning information from non-sequential features.
Therefore we aim to combine them together to improve the performance of query
execution time prediction.

Our main contributions are summarized as follows:

— We propose a learning framework based on deep neural network, namely
DeepQT, to solve the problem of query execution time prediction. By lever-



DeepQT : Learning Sequential Context for Query Execution Time Prediction 3

SELCET a.col_name, count(*)
FROM Table1 a
JOIN Table2 b
ON a.col_name=b.col_name

<}:' WHERE b.col2_num>15

AND b.col2_num<20

GROUP By a.col_name
ORDER By count(*) DESC
LIMIT 1000;

02 05
o, o,
o)

Fig. 1. Illustration for the query execution plan

aging the large volume of historical user query job data stored in MaxCom-
pute 4, DeepQT has the ability of learning sequential context to make an
accurate query time prediction by jointly training a recurrent model compo-
nent and a deep model component.

Taking the sequential context of query jobs into consideration, we devise a
novel neural network architecture to learn the pattern across different job
configurations (e.g., PlanMem, PlanCpu and RunningMode (see Table 1))
and the sequential contextual information (i.e., the order and dependency
between the operators in query execution plan) simultaneously. Such sequen-
tial contextual information can help to significantly improve the accuracy of
the prediction.

4 MaxCompute (previously known as ODPS) is a general purpose, fully man-

aged, multi-tenancy data processing platform for large-scale data warehousing.
https://www.alibabacloud.com/product /maxcompute



4 J. Ni et al.

— We evaluate our model on the data about real-world users’ query jobs, which
is more important and challenging than evaluating on the data about bench-
mark query jobs. The experimental results demonstrate the advantage of our
model over existing methods.

2 Problem Definition

Table 1. The features of query job configuration

Features Comment
PlanMem the memory allocated to the job
PlanCpu the cpu allocated to the job

RunningMode the running mode of the job
ExecutorNum the number of executor allocated to the job
InputRecord the number of records the query need to scan

TableNum the number of table relevant to the job
taskNum the number of task in execution plan
instNum the number of instance in execution plan

RunningCluster the running cluster of the job

When users submit query jobs to the system, query optimizer of the system
would generate an execution plan of the query job and the corresponding job
configuration. The job configuration includes general descriptions about the ex-
ecution environment of query jobs (as shown in Table 1). The query execution
plan consists of many operators in tree-based structures (see Figure 1), which
is also named Physical Operators Tree (POT). Thus, the topology of a query
execution plan is used to represent the query job.

Let U = {ug,ug,...,uny} denote a set of users and P, = {q1,¢2,.--,4c, }
denote all query execution plans (POTSs) for each user u,, where g¢i=12.. .,
is the representation of query execution plan and ¢, is the number of plans.
There should be a corresponding time spent by execution plan, which is defined
as T,, = {t1,t2,...,tc, }. Moreover, we use J,, = {j1,72,..-sJc, } t0 denote the
corresponding job configuration of execution plan.

Problem Statement: Given the historical data P and J of users in U, as
well as their corresponding execution time 7', our goal is to learn a predictor
to estimate the execution time of the newly query job of users based on the
configuration and execution plan of the job.

3 DeepQT Model

3.1 Model Overview

In our study, we divide the input features into two categories: 1) sequential
feature (i.e., POT) and 2) non-sequential features (e.g., InputRecord and Plan-
Mem). Inspired by the DeepFM model [11] that can well utilize the advantages



DeepQT : Learning Sequential Context for Query Execution Time Prediction 5

Y

Output Units

Deep Component

Sequence Component

B-LSTM

F-LSTM

Bi-LSTM

sequential feature non-sequential features

Fig. 2. Overview of the DeepQT architecture for query execution time prediction(
F-LSTM: Forward Long Short-Term Memory; B-LSTM: Backward Long Short-Term
Memory; Bi-LSTM: Bidirectional Long Short-Term Memory; Block: the combination
of a series of consecutive operations whose details are shown in Figure 4

)

of Factorization Machine (FM) and feed-forward neural network to learn both
low-order and high-order feature interactions, we propose a new neural network
model, DeepQT, to handle the above two kinds of features.

As shown in Figure 2, our model consists of two main components, a sequence
component and a deep component. Taking the topology of POT as input in se-
quence component and other non-sequential features as input in deep component,
the two components are jointly trained for learning sequential contextual infor-
mation and learning non-sequential features. The structure of the joint training
framework we devised has the ability to integrate the knowledge learned by the
above two components.

Specifically, through a lookup table operation, the POT is first mapped to
the embedding vectors with a fixed dimension, then fed into RNN layers to learn
the sequential pattern of POT. The deep component is a feed-forward neural
network with skip connection, which aims to learn the pattern of the other non-



6 J. Ni et al.

Forward
LSTM

Backward
LSTM

Token

Embedding O

TableScan Filter Project AdhocSink

Fig. 3. The detail of Bi-LSTM in architecture overview

sequential features. In the output units, the outputs of the sequence component
and the deep component are concatenated first, then fed into a fully connected
layer to get the final output, which can be defined as follows:

Z/J\ = Wt [ydeep : ysequence] + bOUtv (1)

where ¥ is the predicted execution time, ygeep is the output of deep component,
Ysequence 18 the output of sequence component, [Ygeep : Ysequence] is the concate-
nation of the outputs, W and b°“! are the learnable parameters. Then, the 7
will be fed into a loss function for joint training.

3.2 Sequence Component

The sequence component is used to learn the dependency between operators in
the query execution plan, which is illustrated in Figure 3. Through tokenization,

we represent the original operators in a query plan ¢, as O™ = [0}, ...,o’gqn],
and apply the commonly used embedding layer to map each operator into an
embedding vector with fixed-sized dimension, denoted by E™ = [e}, e €p ]

The embedding vectors can be learned during training to obtain more accurate
representations of each operator. Then, we feed the embedding vectors into RNN
layers which are sensitive to operator order and can learn the complex sequential



DeepQT : Learning Sequential Context for Query Execution Time Prediction 7

and dynamical relationship between embedding vectors well. Since the standard
RNN would be hard to train as result of the long-term dependencies in sequence
and the gradient vanishing [3], we apply the Long Short Term Memory (LSTM)
cell to solve this problem for its powerful ability to learn long-term dependencies
and prevent vanishing gradient problem.

The LSTM cells are building units for layers in RNNs, which introduce the
gate mechanism. In LSTM, there are three gates (i.e., input gate, forget gate and
output gate), each of which contains its own individual learnable variables [15].
These multiple gates allow the cells in LSTM to control the proportion of infor-
mation to forget and to store. As a result, LSTM shows a significant improvement
in addressing long-term dependency problem. Specifically, the hidden layers of
LSTM can be computed as:

= LSTM(ezlv ?71)7 (2)

Where h}' is the output of LSTM hidden layer, h;' ; is the output of previous
LSTM hidden layer and e} is the input of LSTM hidden layer, which refer to
embedding vectors of operators.

Moreover, to learn the sequence information better, a bidirectional LSTM
consisting of a forward and a backward LSTM is applied to learn both forward
sequence and reversed sequence, which is depicted in Figure 3. Through learning
reversed order of sequence simultaneously, many short-term dependencies can be
introduced to make the process of optimization much easier. The final output of
the sequence component can be computed as:

noL
Ysequence = [;?qn : hcq”] (3)

where Z is the last hidden state of backward LSTM, h” is the last hidden
state of forward LSTM, and the concatenation of these two states is the final
output of sequence component.

3.3 Deep Component

The deep component is a feed-forward neural network using the skip connection,
which aims to create short paths from previous layers to the subsequent layers.
In our implementation, we combine some consecutive operations into a block,
which is illustrated in Figure 4. In a block, we adopt the Batch Normalization
(BN) [14] right after Fully Connected (FC) layer and before Rectified Linear
Unit (ReLU) [10] activation function to increase the speed of model training.
The Batch Normalization (BN) layer is a novel mechanism for reducing the in-
ternal covariate shift, which refers to the change in the distribution of network
activation caused by the change in network parameters during training. Inside
layers, the normalization is performed for each input mini-batch. Besides, two
additional learnable parameters are introduced to ensure the representation abil-
ity of the network [14]. In previous researches, it has been proved that the BN is
an effective and promising way for improving the gradient propagation and the
training speed of the network.



8 J. Ni et al.

g (+1)

@ck

Relu

Sl

BN

1

FC

M

Concat
\ = 4
(-1 )/ a0

Fig. 4. The detail of the block (FC: Fully-connected; BN: Batch Normalization)

In addition, compared to traditional feed-forward neural network that is com-
posed of fully connection, the deep component in DeepQT adds residual skip
connections (called RES) between all blocks (see Figure 2). For each block, the
input is the concatenation of the outputs of the precedent block, and its output
is used as input in the later layers. Due to the success of residual skip connec-
tion in alleviating the vanishing gradient problem and enhancing the feature
propagation [12,13], we adopt it as our connection mode, which is beneficial for
both convergence rate of the deep component and the performance of prediction.
Specifically, the forward process can be denoted as:

W = HOWW[a=2) q0=D] 4 p0), (4)

where a(®) refers to the output of the I-th block. a(®) denotes the input vector,
and [a~1 a~1D] is the concatenation of the outputs produced in (I — 1)-th
block and (I — 2)-th block. We define a function H"), which begins with the
batch normalization, followed by a ReLLU activation function.

3.4 Periodicity Analysis

In this section, we extract periodicity information to get a more accurate pre-
diction result. According to our observations, the execution time of query jobs
submitted by the same user usually changes periodically, which means that the
execution time of query jobs at a certain time interval is similar to the same



DeepQT : Learning Sequential Context for Query Execution Time Prediction 9

N
v

2 2 |
!
E 10 E 50 |
c c i
o 8 o 1
E ERD) 5
|
3 6 3 !
X x 1
wi wo 1
v 4 () !
o o !
© © 1
o LA !
o 2 9] '
> > ]
Z < 1
H H H H 0 ! ! ! !

first second third fourth first second third fourth

Time Time
(a) The periodicity of user 7 (b) The periodicity of user 0

Fig. 5. Periodicity Information

time interval of the previous day for the same user. In Figure 5, we collect the
query jobs of two users submitted in four days to analyze the periodic character-
istics of the execution time. Figure 5(a) depicts the daily periodicity with four
obvious peaks. Although the execution time of query jobs is more turbulent in
Figure 5(b), we can still find the daily periodicity, especially at the early part
of the day where there are two to three peaks. Moreover, it is observed that the
execution time in the late part of the day is obviously less than that in the early
part of the day, which implies that users tend to submit large query jobs in the
morning and small query jobs late in the day. The periodicity information can
be regarded as the supplementary of the learnt features. Therefore, we add the
periodicity data as a non-sequential feature into the deep component.

For extracting the periodicity information, the granularity of a timestamp is
first set as 1 hour (i.e., 10:00 am-11:00 am) and then represented as a one-hot
vector. Finally, we feed all the one-hot vectors into the deep component as an
input feature to capture the pattern of daily periodicity for execution time.

4 Experiment

In this section, we first describe our training datasets and training details. More-
over, we conduct extensive experiments to evaluate our proposed model on these
datasets.

4.1 Training Details

The model is trained to minimize the L2 loss between the training data and the
predictions. Formally, the loss function can be computed as L = 3, (¥ — y1)?
where 77 is the predicted value, y? is the real value and @ is the training data.
In addition, for the implementation of our model, we utilize TensorFlow. We use
the ReLU [20] activation function after every fully connected layer. The weights
in DeepQT are initialized with Xavier initialization [9]. The model is trained
with the batch size of 1024 and a mini-batch stochastic gradient descent using

)



10 J. Ni et al.

the distribution of execution time the distribution of execution time
60000
30000
50000
25000
8 8
© 40000 <. 20000
= =
o o
2 30000 € 15000
3 3
o o
© 20000 C 10000
10000 5000
0 0
0 5 10 20 30 40 100 1000 0 5 10 20 30 40 100 1000
execution time execution time
(a) Data distribution of D1 (b) Data distribution of D2

Fig. 6. Distribution of execution time in datasets

Adaptive Moment Estimation (Adam) optimizer [16] with a learning rate 0.001.
Moreover, the hyperparameters of our best-performing model in experiments are
shown as follows. The dimension of the word embedding is 64; the dropout is
applied before all fully connected layers with the ration of 0.3; the size of each
hidden recurrent layer in the sequence component is 128; sizes of fully connected
layers are 258, 126, 64, and 32 respectively. Besides, the early stopping strategy
is adopted to terminate the training process when the model achieves the best
performance on validation datasets. For the hardware environment, one NVIDIA
GTX 1080ti GPU with 8 GB of RAM is used to train the model.

4.2 Datasets

MaxCompute is a commercial distributed computing platform for large-scale
data warehousing, in which users submit millions of queries every day. When
users’ queries are submitted to the platform, the MaxCompute will generate a
corresponding job. Such query job contains an execution plan of the query and a
job configuration file which describes the execution environment of the job. We
generate two training datasets by extracting query logs from MaxCompute in a
period of time. In particular, the first dataset, D1, contains more than 217,000
query jobs of users, allocated from 13th November to 13th December in 2019.
The second dataset, D2, contains about 156,000 query jobs of users, allocated
from 13th October to 9th December in 2019. In order to highlight the generality
of the model, the dataset D2 we obtain has different data distribution from the
D1, as shown in Figure 6. We can find that the execution time of most query
jobs on the D1 is less than 30 seconds, and the distribution of execution time
on the D2 is more homogeneous. Two datasets have the same fields of features
and these 29 fields of features in the datasets are divided into three categories:
1) sequential context (i.e., execution plan (POT)), 2) job configuration (such as
PlanMem, PlanCpu and InputRecord (see Figure 1)) and 3) the submitting time
of query jobs. All fields of the features are used in the experiment. Furthermore,
30% of each dataset are randomly selected as test data and the rest as training
data.



DeepQT : Learning Sequential Context for Query Execution Time Prediction 11

4.3 Baselines

The method proposed in this paper is compared with the following baseline
methods:

— SVR [24]: As a traditional machine learning technology, Support Vector
Regression (SVR) has been proved to be able to achieve good performance
in the regression problem.

— MLR [2]: As the most common form of linear regression analysis, Multiple
Linear Regression (MLR) is used to predict the query execution time.

— DTR: By using Decision Tree Regression (DTR), a regression model is built
in the form of a tree structure to perform the prediction.

— RFR: Random Forest Regression (RFR) is an ensemble technique, which can
perform the regression task using multiple decision trees and a technique
called Bootstrap Aggregation. The RFR implementation from the scikit-
learn library is used in this paper.

— GBR: Using Gradient Boosting Regression (GBR), a prediction model is
built in the form of an ensemble of weak prediction models. It has been
proved that it has the powerful ability in regression tasks.

— XGBoost: As a popular and efficient ensemble method, XGBoost [4] has
been widely applied in many regression problems because of its remarkable
performance.

Except for the job execution plan (i.e., POT), the input features for baseline
methods are the same as those for the method proposed in this paper for the
purpose of fair comparisons. The number of different operations in the POT is
used as input features in baseline methods. In contrast, the whole topology of
POT is used as an input feature in the proposed method.

4.4 Effectiveness Comparisons

Table 2. Comparison among different methods on D1 dataset

Method RMSE
MLR 9.498
SVR 9.756
DTR 9.973
RFR 8.310
GBR 8.249
XGBoost 8.087
DeepQT-4-DNN 8.234
DeepQT-4-DNN-RES 8.118
DeepQT-4-DNN-RNN 8.005
DeepQT-4-DNN-RNN-RES|7.998
DeepQT-5-DNN-RNN-RES|8.016
DeepQT-3-DNN-RNN-RES|8.116




12 J. Ni et al.

Performances of our method and other baseline methods are evaluated by
Root Mean Square Error (RMSE). Formally, 7 is used to denote the predicted
value of y?, and @ is used to denote the test data. Then, the RMSE can be
defined as follows:

RMSE = | - > @ - y)? ()
<l q€Q

We first compare DeepQT with the baselines on the D1 dataset, which is
depicted in Table 2. Meanwhile, we compare 6 variants of DeepQT with dif-
ferent components and layers to evaluate the effect of each component and the
number of hidden layers. Taking DeepQT-4-DNN-RNN-RES as an example, it
adds RES connections between 4 block layers in the deep component, where each
block contains a BN layer, an FC layer, a concatenation layer and an activation
function ReLU. Besides, it has a sequential component for learning sequential
context. On the contrary, DeepQT-4-DNN means the model that only has a deep
component.

It can been seen from Table 2 that the results of some tradition machine
learning methods, such as MLR, SVR, and DTR, are obviously larger than
other methods. The advanced methods based on ensemble learning (i.e., RFR,
GBR and XGBoost) all provide a result of well-performance prediction, among
which XGBoost achieves the best prediction accuracy among the baseline meth-
ods in terms of RMSE. The method proposed in this paper outperforms other
existing baseline methods. It can be seen from the experiments that the RMSE
of DeepQT-4-DNN- RNN-RES is 7.998, which significantly improves the predic-
tion accuracy. The results of DeepQT-4-DNN and DeepQT-4-DNN-RES show
that the deep feed-forward neural network with skip connections can achieve a
well-performance result compared with other traditional methods; that is, skip
connections indeed can improve the performance of DeepQT. The reason may
be that the skip connections can enhance the gradient propagation and avoid
losing some shallow information during propagation. Moreover, taking sequen-
tial context into consideration, the topology of POT is fed into the sequence
component (BiLSTM in our framework) in DeepQT-4-DNN-RNN. The results
show that DeepQT-4-DNN-RNN is further promoted, which indicate that the
sequence component can exactly capture the pattern of order and dependency
in sequential context. Meanwhile, the joint training framework in this paper has
the ability to supplement the knowledge learned in the deep component with
the knowledge learned in the sequential context. In addition, from the results
of the experiments, we can find that DeepQT with 4 blocks can obtain a better
result than DeeQT with 3 or 5 blocks. Although the effectiveness of DeepQT-4-
DNN-RNN-RES is slightly improved compared with DeepQT-4-DNN-RNN] its
efficiency of convergence is greatly improved, which we will show in Section
4.5.

Table 3 shows the results of experiments on the D2. From the results, we can
see that our proposed approach achieves the best performance on this dataset.
We can find that the RMSE of the DeepQT-4-DNN-RNN-RES has relatively
from 3.8% up to 29.9% lower than these baselines on the D2, which demonstrates



DeepQT : Learning Sequential Context for Query Execution Time Prediction 13

Table 3. Comparison among different methods on D2 dataset

Method RMSE
MLR 12.339
SVR 12.867
DTR 13.583
RFR 12.567
GBR 11.174
XGBoost 10.858
DeepQT-4-DNN 11.412
DeepQT-4-DNN-RES 10.887
DeepQT-4-DNN-RNN 10.475
DeepQT-4-DNN-RNN-RES|10.452
DeepQT-5-DNN-RNN-RES|10.566
DeepQT-3-DNN-RNN-RES|10.626

the excellent generalization and superiority of our proposed approach on the
datasets with different data distribution.

Since the execution time of most queries in datasets is between 0 and 100 sec-
onds (shown in Figure 6), and the number of samples is large enough, the minor
improvement of RMSE, 0.1 or 0.4, would represent a significant improvement
in efficiency. Specifically, for a small number of long-term tasks in datasets, it
would be an error difference of one minute or two minutes. Hence, it is essential
for downstream tasks (e.g., Task Scheduling [6]).

4.5 Efficiency Analysis

In this section, we conduct experiments on two datasets to evaluate the efficiency
of all the DeepQT variants by comparing their convergence rates. To ensure a
fair comparison, we maintain the same hyperparameters for different variants
and train the variants using Adam method [16] with batch size of 1024 and
learning rate 0.001. The weights in our framework are initialized with Xavier
initialization [9]. Learning curves are presented in Figure 7.

It is noted that the variant with the sequence component (marked as DNN+RNN)
and the variant with the RES connection (marked as DNN+RES) converge much
faster than the variants with a single component (marked as DNN), which means
the proposed model can be trained by using less epochs. Furthermore, the se-
quence component and the RES connection not only increase the prediction ac-
curacy but also improve the convergence rate. Not surprisingly, the combination
of both sequence component and RES connection (marked as DNN+RNN+RES)
can achieve the best performance in convergence rate.

To sum up, it can be found from the experiments that the proposed frame-
work can well learn the sequential context to increase the prediction accuracy
and reduce the iterative time for convergence under different data distributions.



14 J. Ni et al.

the efficiency of convergence the efficiency of convergence
500007 o -»- DNN+RES . -»- DNN+RES
y -+= DNN-+RNN \ ~+= DNN+RNN
\ -k~ DNN+RNN+RES 50000 -k~ DNN+RNN+RES
400004 4 ~e- DNN ~e- DNN
.
") \ )
g O 2 40000
S X S
§ 30000 AP 3 LY s
2 \i\\\ N € 30000
s nhoow s
3
20000 VR .
VAN W 20000
VN
10000 A, Ny er 2000 258228
10000
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch
(a) The learning curve on D1 dataset (b) The learning curve on D2 dataset

Fig. 7. Efficiency of convergence on datasets

5 Related Work

5.1 Query Execution Time Prediction

As a significant problem in the database management research, the query ex-
ecution time prediction has received great attention over the last decades. [8]
proposes an approach to address this problem based on a Kernel Canonical
Correlation Analysis (KCCA) modeling technique. After then many machine
learning techniques are applied to query time prediction, such as Support Vec-
tor Regression (SVR) [24], Multiple Additive Regression-Tree (MART) [17] and
Multiple Linear Regression (MLR) [2]. Unlike these work based on machine learn-
ing technique, [27] proposes a method based on calibrating cost models of the
query optimizer. However, the above works always assume the workload of the
database is static, which is unrealistic. To relieve this problem, some works are
proposed by considering the workload is concurrent and dynamic for generality,
such as [26], [1] and [7]. However, these works are not general enough. The query
data they use for the experiments is still baseline queries rather than real-world
queries. Moreover, the database management they use for the experiments is still
centralized rather than distributed.

5.2 Deep Learning

Deep learning techniques have been applied to many difficult problems in various
domains and achieved excellent success [5,12,21]. In this paper, a recurrent
neural network and a deep feed-forward network are combined into a model
for joint training to solve the difficulties in predicting query execution time.
The idea of jointly training is inspired by previous researches such as Wide
& Deep [5], which explores the joint training of a linear model and a feed-
forward neural network for the CTR prediction. The DeepFM proposed by [11]
is an extension of Wide & Deep model to share the input embedding for both
the wide part and the deep part. In computer vision, the joint training of the
convolution network and a graphical model have been applied to the human pose



DeepQT : Learning Sequential Context for Query Execution Time Prediction 15

estimation from images [22]. Additionally, in language models, a joint training
of a maximum entropy model and a recurrent neural network are proposed to
reduce the computational complexity [18]. Different from previous researches, our
proposed DeepQT is jointly trained for learning the pattern from both sequential
features and non-sequential features.

6 Conclusion

In this paper, we study the problem of query execution time prediction. We
propose a learning framework named DeepQT, which jointly trains a recurrent
neural network and a deep feed-forward neural network. Our approach has the
ability to learn sequential context to improve prediction accuracy and reduce
the number of convergent iterations. Extensive experiments are conducted on
real-world datasets, whose results show that our model outperforms the existing
methods. Moreover, our framework has excellent generality and can achieve great
performance on datasets with different data distributions. One of our future work
is to incorporate our framework into the database management system so that
it can be used in more applications.

Acknowledgement

This work is partially supported by Natural Science Foundation of China (No.
61972069, 61836007, 61832017, 61532018, 61802054) and Alibaba Innovation Re-
search (AIR).

References

1. Ahmad, M., Duan, S., Aboulnaga, A., Babu, S.: Predicting completion times of
batch query workloads using interaction-aware models and simulation. In: EDBT.
pp. 449-460 (2011)

2. Akdere, M., Cetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based
query performance modeling and prediction. In: ICDE. pp. 390—401 (2012)

3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks 5(2), 157-166 (1994)

4. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: SIGKDD.
pp. 785-794 (2016)

5. Cheng, H.T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., An-
derson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for
recommender systems. In: DLRS. pp. 7-10 (2016)

6. Chi, Y., Moon, H.J., Hacigiimiig, H.: icbs: incremental cost-based scheduling under
piecewise linear slas. PVLDB 4(9), 563-574 (2011)

7. Duggan, J., Cetintemel, U., Papaemmanouil, O., Upfal, E.: Performance prediction
for concurrent database workloads. In: SIGMOD. pp. 337-348 (2011)

8. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson,
D.: Predicting multiple metrics for queries: Better decisions enabled by machine
learning. In: ICDE. pp. 592-603 (2009)



16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Ni et al.

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS. pp. 249-256 (2010)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AIS-
tats. pp. 315-323 (2011)

Guo, H., TANG, R., Ye, Y., Li, Z., He, X.: Deepfm: A factorization-machine based
neural network for ctr prediction. In: IJCAIL pp. 1725-1731 (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770-778 (2016)

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR. pp. 2261-2269 (2017)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448-456 (2015)

Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078 (2015)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Li, J., Konig, A.C., Narasayya, V., Chaudhuri, S.: Robust estimation of resource
consumption for sql queries using statistical techniques. PVLDB 5(11), 1555-1566
(2012)

Mikolov, T., Deoras, A., Povey, D., Burget, L., Cernocky, J.: Strategies for training
large scale neural network language models. In: ASRU Workshop. pp. 196-201
(2011)

Mishra, C., Koudas, N.: The design of a query monitoring system. TODS 34(1),
1 (2009)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: ICML. pp. 807-814 (2010)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: NIPS. pp. 3104-3112 (2014)

Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional
network and a graphical model for human pose estimation. In: NIPS. pp. 1799-1807
(2014)

Tozer, S., Brecht, T., Aboulnaga, A.: Q-cop: Avoiding bad query mixes to minimize
client timeouts under heavy loads. In: ICDE. pp. 397408 (2010)

Van Wouw, S.: Performance evaluation of distributed sql query engines and query
time predictors (2014)

Wasserman, T.J., Martin, P., Skillicorn, D.B., Rizvi, H.: Developing a characteriza-
tion of business intelligence workloads for sizing new database systems. In: DOLAP.
pp. 7-13 (2004)

Wu, W., Chi, Y., Hacigtimiig, H., Naughton, J.F.: Towards predicting query execu-
tion time for concurrent and dynamic database workloads. PVLDB 6(10), 925-936
(2013)

Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigiimiis, H., Naughton, J.F.: Predicting
query execution time: Are optimizer cost models really unusable? In: ICDE. pp.
1081-1092 (2013)



