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ABSTRACT
Graph query services (GQS) are widely used today to interactively
answer graph traversal queries on large-scale graph data. Existing
graph query engines focus largely on optimizing the latency of
a single query. This ignores signi�cant challenges posed by GQS,
including �ne-grained control and scheduling during query execu-
tion, as well as performance isolation and load balancing in various
levels from across user to intra-query. To tackle these control and
scheduling challenges, we propose a novel scoped data�ow for mod-
eling graph traversal queries, which explicitly exposes concurrent
execution and control of any subquery to the �nest granularity.
We implemented Banyan, an engine based on the scoped data�ow
model for GQS. Banyan focuses on scaling up the performance
on a single machine, and provides the ability to easily scale out.
Extensive experiments on multiple benchmarks show that Banyan
improves performance by up to three orders of magnitude over
state-of-the-art graph query engines, while providing performance
isolation and load balancing.
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1 INTRODUCTION
Graph query services (GQS) are widely used in many Internet appli-
cations ranging from search engines, recommendation systems, to
�nancial risk management. The global GQS market is estimated to
reach 2.9 billion USD by 2024, with an annual growth of 22.2% [13].
In these applications, data are represented as graphs such as knowl-
edge graphs and social networks. Explorations on the data are
usually expressed as graph traversal queries. GQS serves these
large-scale graphs for interactive query access, allowingmany users
to submit graph traversal queries and obtain results in real-time.
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Previous graph query engines [15, 26, 34, 35, 43, 46] mainly focus
on optimizing the query latency by improving computation e�-
ciency, i.e., traversing more vertices/edges in a time unit. However,
we observe that optimizing for computation e�ciency alone is not
su�cient to achieve short query latency. A multi-tenant GQS needs
to address two key goals to ful�ll stringent latency requirements:
(O1) �ne-grained control and scheduling, as well as (O2) perfor-
mance isolation and load balancing during the query execution.
Fine-Grained Control and Scheduling (O1).A graph query usu-
ally performsmany traversals starting from di�erent source vertices
in the graph. We observe two key techniques that can reduce query
latencies, and in turn boost the system throughput: (O1-1) concur-
rently executing these traversals, and controlling them at a �ne
granularity; (O1-2) carefully choosing the traversal strategy.

Example 1 (A Graph Traversal Query in Gremlin).
g.V(123).repeat(out(‘knows’))

.until(out(‘worksAt’).is(eq(‘XYZ’)))

.or().loops().is(gt(5)))

.where(in(‘tweets’).out(‘hasTag’).is(eq(‘#ABC’)))

.limit(20)

Example 1 shows a graph traversal query intended to �nd 20
users who are within the 5-hop neighborhood of user 123, work
at company ‘XYZ’, and have tweeted with hashtag ‘#ABC’. When
executing this query, every user entering the where subquery starts
a new traversal, which can be canceled immediately if any tweet of
the user is found to have the desired hashtag. Canceling this traver-
sal should not a�ect the traversals of other users. More importantly,
it should not be blocked by other traversals, e.g., by users who
tweet a lot but without hashtag ‘#ABC’. This implies that a GQS
needs to support concurrent execution and �ne-grained control of
subquery traversals (O1-1).

Eagerly checking the hashtags tweeted by one user requires a
DFS scheduling policy for thewhere subquery. The same scheduling
policy holds within each loop iteration in the repeat subquery, as
we would like to eagerly check if a neighbor works at company
‘XYZ’. However, it would be preferable to use BFS when scheduling
across loop iterations of the repeat subquery. This is because we
do not want to blindly explore all neighbors within 5 hops if 20
candidates can be found in a much smaller neighborhood. This
implies that GQS systems need to support customized traversal
policies in subqueries (O1-2).
Performance Isolation and Load Balancing (O2). It is challeng-
ing to ful�ll the stringent latency requirement in a production
environment. Due to the intrinsic skewness in graph data, graph
traversal queries can vary dramatically in terms of the amount
of computation. Therefore, GQS should be capable of enforcing
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Table 1: Comparing graph query engines on O1 and O2.

Neo4j JanusGraph Timely GAIA Banyan
O1-1 % % % ! !

O1-2 % query-level only % query-level only !

O2 % % % % !

performance isolation across queries to guarantee the latency SLO.
In addition, as illustrated in Example 1, for better performance, the
isolation granularity needs to be as small as subquery-level traver-
sals. Existing graph databases [15, 26, 27] map concurrent queries
to system threads and rely on the operating system for scheduling.
This mechanism does not expose the internal query complexity
and thus cannot support subquery-level isolation. The skewness
in graph data can lead to dynamic workload skewness at run time,
requiring GQS to provide dynamic load balancing.

Table 1 compares existing graph query engines on their supports
for O1 and O2. Many graph query engines [8, 22, 25, 32, 36, 39] use
the data�ow model to execute graph traversal queries in languages
such as Cypher [9], Gremlin [40] and GSQL [39]. Existing data�ow
models either a) support only static topologies (e.g., Timely [23]
and GAIA [32]) or b) can only dynamically spawn tasks at coarse
granularity (e.g., CIEL [24]). Speci�cally, Timely and GAIA attach
a metadata in every message to identify which subquery traversal
it belongs to, but then these systems process messages belonging
to di�erent traversals of a subquery in the same static execution
pipeline determined at compile time. Without physically isolating
the traversals inside a subquery, these systems cannot e�ciently
support both O1 and O2. We discuss the limitations of existing
data�ow models in Section 2, and evaluate this issue in Section 5.

In this paper, we propose a novel scoped data�ow to model graph
traversal queries, which supports �ne-grained control and sched-
uling during query execution. The scoped data�ow model intro-
duces a key concept called scope. A scope marks a subgraph in
the data�ow, which corresponds to a subquery. The scope can be
dynamically replicated at runtime into physically isolated scope in-
stances which correspond to independent traversals of the subquery.
Scope instances can be concurrently executed and independently
controlled. This way, traversals of a subquery can time-share the
CPU and be independently canceled without blocking or a�ecting
each other. Furthermore, a scope allows users to customize the
scheduling policy between and inside scope instances, supporting
diverse scheduling policies for di�erent parts of a query.

We build the Banyan engine for a multi-tenant GQS, based on
an e�cient distributed implementation of scoped data�ow. Banyan
parallelizes a scoped data�ow into a physical plan of operators,
and cooperatively schedules these operators on executors pinned
on physical cores. On each executor, Banyan dynamically creates
and terminates operators to instantiate and cancel scope instances.
Banyan manages operators hierarchically as an operator tree: op-
erators are scheduled recursively by their parent scope operators.
This hierarchy allows customized scheduling within each scope,
and provides performance isolation both across queries and within
a single query. Banyan partitions the graph into �ne-grained tablets
and distributes tablets across executors. To handle workload skew-
ness, Banyan dynamically migrates tablets along with the operators

accessing them between executors for load balancing. In summary,
the contributions of this paper include:
(1) We propose the scoped data�ow model, which introduces a

novel scope construct to a data�ow. The scope explicitly exposes
the concurrent execution and control of subgraphs in a data�ow
to the �nest granularity (Section 3).

(2) We build Banyan, an engine for GQS based on a distributed
implementation of the scoped data�owmodel. Banyan can lever-
age themany-core parallelism in amodern server, and can easily
scale out to a distributed cluster (Section 4).

(3) We conduct extensive evaluations of Banyan on popular bench-
marks. The results show that Banyan has 1-3 orders of magni-
tude performance improvement over the existing graph query
engines and provides performance isolation and load balancing.

2 LIMITATIONS OF EXISTING DATAFLOW
MODELS

In the data�ow model, a graph traversal query is represented as a
directed graph of operators as vertices, where each operator sends
and receives messages along directed edges. Figure 1(a) presents a
typical logical data�ow for Example 1, where the repeat subquery
is translated into verticesV2,V3 andV4, the where subquery is trans-
lated into vertices V5, V6 and V71. Other data�ow models such as
Timely [23] and GAIA [32] share the same main structure demon-
strated in Figure 1(a). In these data�ow models, their topologies are
�xed at compile time, and thus they are referred to as topo-static
data�ows in the following discussions. Next, we use Example 1 on
the data graph in Figure 1(b) to illustrate the limitations of using
topo-static data�ows in a GQS.
Control on Concurrent Traversals (O1-1). A graph query usu-
ally has subqueries that can launch many independent traversals
starting from di�erent vertices. E.g., each sub-tree rooted at P1, P2,
P4 in Figure 1(b) is an independent traversal of the where subquery.
Figure 1(c) demonstrates an example execution pipeline of thewhere
subquery of Figure 1(a) in the topo-static data�ow model. Messages
of di�erent traversals are marked in di�erent colors and are pro-
cessed sequentially. Ideally, the red traversal P2 can terminate right
after V7 processes hP2,G2i. However, P2’s remaining messages (in
red box) cannot be trivially canceled since messages of di�erent tra-
versals are mixed in the pipeline. To cancel a speci�c traversal, the
engine has to annotate each message with extra traversal metadata,
and �lter messages by their metadata at each operator.
Diverse Scheduling Policies (O1-2). Inside a graph query, dif-
ferent subqueries often have very diverse scheduling preferences.
Consider the repeat subquery. Instead of blindly exploring all the
5-hop neighbors, a better strategy is to gradually expand the ex-
ploration radius, as closer neighbors (e.g., P1 and P2 in the �rst
hop) are more likely to work at the same company with the start
person. This corresponds to completing the traversals of earlier
iterations �rst, i.e., in a BFS manner. Meanwhile, inside an iteration
we prefer to �nish checking if a neighbor is a match before the
next, i.e., scheduling operatorsV2-V4 in a DFS manner. However, as
depicted in Figure 1(d), in the topo-static data�ow model, messages
of di�erent iterations are mixed and may be misordered due to

1For simplicity, we omit projection operators in the data�ow, and annotate the schema
of the message along each edge.
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getV(123)

getOutV("Knows")

getOutV("worksAt")

switch(company="xyz",
#loop<=5)

getInV("tweets")

getOutV("hasTag")

filter(tag="#ABC")

dedup_and_limit(20)

<pid>

<pid>

<pid, company>

<pid, tweet>

<pid, tag>

<pid>

REPEAT

WHERE

<pid>

<pid>
(a)

Start Person
Company = "XYZ"

Person

Company ≠ "XYZ"

Tweet
Tag = "ABC"
Tag ≠ "ABC"

......

(b)

P1
P2
P4

<P4, T5>
<P2, T4>
<P2, T3>

...

<P2, G2>
<P1, G1>

(c)

3rd Iter
2nd Iter
1st Iter

P5

P1
P6

<P2, C2>
<P4, C4>

(d)

Figure 1: (a) The logical data�ow for Example 1. (b) An example data graph. (c)(d) Execution pipelines illustrating how the
where and repeat subquery in Figure 1(a) process the example data graph in topo-static data�ow model. For simplicity, the
execution pipelines only depict a snippet of messages generated during query execution.

parallel execution, e.g., P5 belonging to the second iteration are
processed before P1 belonging to the �rst iteration in V3 (P5 was
emitted by the second iteration). To enforce inter-iteration BFS, one
has to annotate each message about which iteration it belongs to,
and sort every incoming message according to this metadata in
V2-V4. As far as we know, no existing graph query engine allows
con�guring subquery-level scheduling policies.
Performance Isolation (O2). In a GQS, the traversal scales of dif-
ferent queries could vary drastically. Even with the same query,
di�erent inputs could lead to traversals of very di�erent scales. E.g.,
on the LDBC benchmark [19], we observed up to three orders of
magnitude di�erence in query latency for the same query with
di�erent starting persons. A subquery traversal with heavy compu-
tation may inde�nitely block other subquery traversals in the same
query. E.g., in Figure 1(c), the traversal of P2 (who tweeted a lot)
blocks the traversal of P4 (messages in black), even if P4 can pass the
predicate. The above observations reveal the necessity to provide
performance isolation in various granularities, from the level of
inter-user in a multi-tenant service, to the level of inter-traversal
inside a subquery.

3 SCOPED DATAFLOW
Scoped data�ow is a new computational model that extends the
existing data�ow model, with the ability to explicitly expose con-
current execution and control of subgraphs in a data�ow to the
�nest granularity. In this section, we de�ne the structure of scoped
data�ow, introduce the programming model, and demonstrate that
scoped data�ow can tackle the problems discussed in Section 2.

3.1 Computation Model
Similar to the traditional data�ow model, a scoped data�ow is
also based on a directed graph G(V , E). Vertices in V send and
receive messages along directed edges in E. The scoped data�ow
introduces a new construct named scope. Formally, a scope is a
sub-structure of the scoped data�owG(V , E), and has two system-
provided vertices: an ingress vertex and an egress vertex. All the
input messages entering a scope pass through its ingress vertex,
and all the messages leaving a scope pass through its egress vertex.
Inside a scope S , vertices which are neither the ingress nor egress
of S are referred to as internal vertices of S . An internal vertex
of S can belong to an inner scope of S . If G(V , E) is cyclic, every

cycle in G(V , E) must be contained entirely within a scope S , and
the backward edge must be from a vertex � in S , to the ingress
vertex of S . Since the edges leaving a scope must pass through its
egress vertex, � cannot be in any inner scope of S . We categorize
scopes into two types: a scope without backward edges is called
a branch scope, and a scope with backward edges is called a loop
scope. Figure 2(a) shows an example of scoped data�ow. Scopes can
be well-nested. The nesting level of a scope S is called its depth,
denoted as dS . The depth of a top-level scope is 1.

A scope marks a region inside a data�ow: the data�ow subgraph
inside a scope can be dynamically replicated at runtime to create
new subgraph instances, isolating the processing of di�erent input
data entering the scope. The newly instantiated data�ow subgraph
of a scope is called a scope instance. The states of vertices in di�erent
scope instances are independent. In a scope S , scope instances are
instantiated as follows:
• Every inner vertex of S and every edge connecting these inner ver-
tices are copied in the new instance. Note that, the ingress/egress
vertices of any inner scopes contained in S are also counted as
S’s inner vertices. The state of each copied stateful vertex is
initialized as the default value.

• Every edge connecting S’s ingress/egress vertex and an inner
vertex, including backward edges, is copied by replacing the inner
vertex with its corresponding copy in the new instance.

Figure 2(b) shows an example of instantiated scoped data�ow with
three scope instances for Figure 2(a).

For a scoped data�owG(V , E), we denote its instantiated scoped
data�ow as G̃(Ṽ , Ẽ). In G̃ , each vertex (resp. edge) in a scope instance
can be uniquely identi�ed by the corresponding � (resp. e) in G,
and a scope tag t of the scope instance. The format of scope tag is:
ScopeTa� : hs1, · · · , sd i 2 Nd , where sk denotes the sk -th scope
instance in a scope of depth k . The vertex (resp. edge) in G̃ identi�ed
by� (resp. e) and the scope tag t is denoted by �̃t (resp. ẽt ). Vertices
and edges not in any scope have an empty scope tag.
Programming Model. In a scoped data�ow, each message bears
the scope tag of the edge it passes through. Every vertex implements
the following APIs:

� .ReceiveMessage(ms� : Messa�e, e : Ed�e, t : ScopeTa�)
� .OnCompletion(t : ScopeTa�)
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Scope

Ingress

Egress

(a)

Scope
Instance 1

Scope
Instance 2

Scope
Instance 3

(b)

Scope 1 Scope 2

 

Ingress Vertex

 

Egress Vertex

(c)

*

Scope
Instance 1

Scope
Instance 2

Scope
Instance 3

(d)

Scope
Instance 1

Scope
Instance 2

Scope
Instance 3

3rd Iter
2nd Iter
1st Iter

...
...

(e)

Figure 2: (a) An example loop scope, and (b) an example of its instantiation. (c) The scoped data�ow for Example 1, and an
instantiation of its (d) branch scope and (e) loop scope.

A vertex may invoke two system-provided methods in the context
of the above callbacks:

this .SendMessage(ms� : Messa�e, e : Ed�e, t : ScopeTa�)
this .NotifyCompletion(t : ScopeTa�)

Users write their logics according to the scoped data�owG, while
at runtime the logics are executed by G̃ . E.g, � .ReceiveMessage(msg,
e , t ) de�nes the logics how �̃t processes a message received along
ẽt . And� .OnCompletion(t) de�nes the logics executed when vertex
�̃t has no more input, e.g., an aggregate operator emits the �nal ag-
gregation results when it sees all the inputs. SendMessage(ms�, e, t)
sends a message along with edge ẽt . NotifyCompletion(t) can be
called if an operator would like to terminate processing proactively,
e.g., a limit operator terminates once it generates enough outputs.
Scope Instantiation. In a scope, the ingress vertex instantiates
scope instances and routes the messages entering this scope to
di�erent scope instances. The egress vertex manages the termina-
tion of scope instances inside a scope. Each scope instances can
be terminated independently. The ingress and egress vertices only
act on the scope tags of messages passing through. Speci�cally, for
each messagems� passing through:
• The ingress vertex routesms� to a destination scope instance SI
and sets the scope tag ofms� to that of SI . If SI does not exist,
the ingress vertex instantiates it.

• The egress vertex removes the last element in the scope tag of
ms�. When OnCompletion(t ) is called in the egress, it terminates
the scope instance with scope tag t .
Branch and loop scopes have di�erent behaviors on how mes-

sages are mapped to scope instances. In a branch scope, every
input message triggers the instantiation of a new scope instance.
Whereas in a loop scope, messages from edges entering the scope
with scope tag hs1, · · · , sd i are routed to the scope instance with
scope tag hs1, · · · , sd , 1i; messages from backward edges with scope
tag hs1, · · · , sd , sd+1i are routed to scope instance with scope tag
hs1, · · · , sd , sd+1 + 1i. A concurrency threshold, Max_SI, can be
set to constrain the number of concurrent scope instances in a
scope. We conducted experiments to study the overhead of scope
instantiation (see Section 5.3).
Scope Scheduling. To ful�ll the requirement of O1-2, a GQS
should be capable of scheduling queries at various granularities, i.e.,
between the traversals/iterations of a subquery and inside the steps

of a single traversal/iteration. Scoped data�ow supports these re-
quirements by allowing customized scheduling policies for scopes.
The scheduling policy of a scope can be decoupled into two parts:
inter-scope-instances (inter-SI) policy and intra-scope-instance (intra-
SI) policy. The inter-SI policy speci�es the scheduling priorities
of scope instances inside a scope. The intra-SI policy speci�es the
scheduling priorities of inner vertices (an inner scope as a whole is
treated as a virtual inner vertex) inside a scope instance. Users can
customize the scheduling policy of a scope using two comparators:

bool InterSI_Comparator(t1 : ScopeTa�, t2 : ScopeTa�)
bool IntraSI_Comparator(�1 : VertexID,�2 : VertexID)

The scheduling of a scoped data�ow follows the hierarchy of its
internal scopes. Speci�cally, the priorities of vertices and scopes at
the same depth are decided by the intra-SI comparator of the scope
they belong to. E.g., the priorities of vertices (V1, V8) and scopes
(S1, S2) in Figure 2(c) are decided by the intra-SI comparator of the
“query” scope. Intuitively, when compared with the same-depth
vertices, each scope is treated as an indivisible “virtual vertex”.
Inside a scope, if scope instance SIi has a higher priority than SIj ,
each vertex in SIi has a higher priority than any vertex in SIj .
For any two vertices ˜ut1 and ˜�t2 in G̃, their scheduling orders are
decided iteratively according to the following rules. Without loss
of generality, we denote the depths of t1 and t2 as d1 and d2, and
assume d1  d2. We use ancd (�̃t ) to denote the ancestor scope
instance of �̃t at depth d .
• We start comparing the ancestor scope instances of ˜ut1 and ˜�t2
from depth 1 to depth d1.

• At depth d , if ancd ( ˜ut1 ) and ancd ( ˜�t2 ) are the same, we proceed
to depth d + 1.

• At depth d , if ancd ( ˜ut1 ) and ancd ( ˜�t2 ) are di�erent scope in-
stances of the same scope S , the priority is determined by call-
ing the inter-SI comparator of S on the tags of ancd ( ˜ut1 ) and
ancd ( ˜�t2 ).

• At depth d , if ancd ( ˜ut1 ) and ancd ( ˜�t2 ) belong to di�erent child
scopes in scope S , the priority is determined by calling the intra-SI
comparator of S on the tags of ancd ( ˜ut1 ) and ancd ( ˜�t2 ).

3.2 Progress Tracking
To correctly invoke OnCompletion(t) for vertices, a scoped data�ow
needs to track the processing progress of its vertices, i.e., when
a vertex is guaranteed to have received all its inputs. The scoped
data�ow model adopts an EOS-based progress tracking mechanism
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inspired by the Chandy-Lamport algorithm [7]: after ingesting all
the external inputs, the runtime automatically inserts an EOS mes-
sage to the data�ow. EOS messages are propagated through the
data�ow graph. Once a vertex receives EOS messages from all its
incoming edges, it calls OnCompletion(t), and then emits an EOS
message in all its outgoing edges. However, as a scoped data�ow
can dynamically instantiate scope instances and may contain cy-
cles, we extend the aforementioned EOS-based progress tracking
mechanism in order to support the scoped data�ow.
Hierarchical Progress Tracking. We track progress hierarchi-
cally in a scoped data�ow, i.e., progress tracking inside and outside
a scope are conducted separately. Progress tracking outside a scope
S simply treats S as a virtual vertex, denoted as �S . The runtime
conducts progress tracking on the data�ow subgraph inside a scope
S to decide the completion of�S , which completes when the ingress
vertex of S receives EOS from all its input edges, and all the scope
instances inside S have completed. Once �S reaches completion,
the egress vertex of S emits EOS along all its outgoing edges.

If a scope has nested sub-scopes, the runtime treats its top-level
sub-scopes as virtual vertices during progress tracking. Take the
scoped data�ow in Figure 2(c) as an example. Treating scopes S1
and S2 as virtual vertices, i.e., VS1 and VS2 , removes cycles from the
data�ow. For bothVS1 andVS2 , it is their ingress vertices that receive
EOS from the upstream neighbor and their egress vertices that emit
EOS to the downstream neighbor. After I1 inVS1 receives EOS from
V1, it is aware thatVS1 has received all the inputs. OnceVS1 �nishes
processing the inputs, E1 in inVS1 calls OnCompletion(t) and emits
EOS for VS2 , which further propagates the EOS as VS1 does. Next,
we explain how the progress tracking is done inside the branch
scope and loop scope, respectively.
Tracking inside a Scope. In a branch scope, the runtime propa-
gates EOS in each scope instance to track their progress indepen-
dently. An ingress vertex reaches completion when it has received
EOS from all its incoming edges. Once completed, the ingress vertex
sends the number of scope instances it has spawned to the egress
vertex of the same scope. When the egress vertex has tracked that
all the scope instances in this scope have completed, it reaches
completion and emits EOS to the outgoing edges.

In a loop scope, all the messages sent from iteration i to (i + 1)
will pass the ingress along the backward edges. Note that the last
loop iteration sends no data message but only EOS to the ingress. If
an ingress only receives EOS but no data message from an iteration
(scope instance), it can infer that this is the last loop iteration. This
way, the ingress can infer the number of spawned scope instances.
With this information, the egress vertex tracks the progress of
scope instances in the same way as the branch scope. This process
is guaranteed to be able to stop due to the simple fact that if you
remove the ingress vertex inside a loop scope (note that the ingress
vertex only forwards messages) and directly connect the edges
according to the forwarding behavior of the ingress vertex, the
instantiated scope data�ow is a DAG without cycles.

3.3 Scoped Data�ow in Action
In this section, we discuss the applicability of scopes, followed by
an example explaining how the scoped data�ow model can be used
to solve the challenges discussed in Section 2.

Applicability of Scopes. The scoped data�ow model is designed
to facilitate �ne-grained control on subquery traversals and en-
force scope-level customization of scheduling policies. Concretely,
scoping can bene�t graph queries with:
(1) where subqueries through early cancellation. For those where

subqueries that cannot be early canceled, scopes should be
turned o� since the instantiation of scope instance brings over-
head (see more details from E2 in Section 5.3).

(2) loop subqueries that can �nd matches more quickly following
certain exploration strategy (e.g., BFS or DFS).
Besides, scope can serve as a resource container that guarantees

performance isolation. From E2 in Section 5.3 we can observe that
the bene�ts of scope depend on the queries and the data. Further
optimizations such as creating an optimal query plan can be done
by the query compiler, which is beyond the scope of this paper.

Example 2 (Implementation of vertex V7 in Figure 2(d)).
class V7Filter : Vertex {

void ReceiveMessage(msg:Message, e:Edge, t:ScopeTag) {

if (msg.GetTag() == "#ABC") {

SendMessage(msg.getPersonId(), out_e, t);

NotifyCompletion(t);}

}

void OnCompletion(t : Tag) { }

}

Example 3 (Implementations of inter-SI BFS and intra-SI DFS).
bool InterSI_BFS:InterSI_Comparator(t_1:ScopeTag, t_2:

ScopeTag) {

return LexicalOrderCompare(t_1, t_2);

}

bool IntraSI_DFS:IntraSI_Comparator(v_1:VertexID, v_2:

VertexID) {

/* Assuming VertexID increments in topological order */

return v_1 < v_2;

}

Examples of Scopes. Figure 2(c) shows the scoped data�ow for
Example 1. Figure 2(d) zooms in the where subquery of Figure 2(c),
and demonstrates instantiations of scope 2. Traversals triggered by
di�erent users entering the where subquery are mapped to di�erent
scope instances, which can be executed concurrently and controlled
independently. This way, a user (e.g., the blue one) who posts many
tweets without the speci�ed tag will not block the progress of other
users (e.g., the red and black ones) entering the where subquery.

Example 2 shows the implementation of the �lter vertex�7 in Fig-
ure 2(d), which enables early cancellation: On receiving a message
ms�, if the tag inms� is a match, the vertex noti�es the completion
of itself by calling NotifyCompletion(t) to trigger its cancellation.
When a match (the red message marked in black box entering �7,2)
is found, the corresponding scope instance (�5,2,�6,2,�7,2) can be
canceled without impacting the other scope instances.

The scheduling policies of scopes can be �exibly con�gured.
Figure 2(e) shows that iterations of the repeat subquery in Figure 2(c)
are mapped into di�erent scope instances of the loop scope. We
con�gure a BFS inter-SI scheduling policy such that the blue scope
instance (the �rst iteration) is executed �rst, then the red one (the
second iteration), and the black one (the third iteration) as the last.
Meanwhile, by enforcing a DFS intra-SI policy, vertices inside the
blue scope instance are scheduled in the order of �̃4,1, �̃3,1 and �̃2,1.
Implementations of the inter-SI BFS and intra-SI DFS policy are
presented in Example 3.
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Figure 3: (a) The architecture of Banyan. (b) An operator tree
mapped from the data�ow in Figure 2(c) in an executor.

4 BUILDING BANYAN ON SCOPED
DATAFLOW

We build Banyan, an engine for GQS based on a distributed imple-
mentation of the scoped data�ow model. Banyan is designed to
e�ciently leverage the many-core parallelism of modern servers,
and agilely balance the workloads across cores. Banyan can also
scale out to a distributed cluster. The overall system architecture
of Banyan is presented in Figure 3(a). A Banyan cluster consists of
a group of worker nodes, each of which manages multiple execu-
tors. An executor exclusively runs in a system thread pinned in a
physical core, and is in charge of a graph partition. Vertices in a
scoped data�ow are parallelized into operators, and are mapped to
executors. Executors communicate with each other through mes-
sage queues inside the worker node and through TCP connections
across worker nodes. In a worker node, executors schedule their
own operators and are scheduled by the worker scheduler. The
worker scheduler is responsible for balancing the workloads across
executors in a worker node.

4.1 Parallelizing A Scoped Data�ow
Banyan parallelizes a data�ow G into a physical plan of operators
in a data-parallel manner. Every vertex in G is parallelized into a
set of operators, each encapsulating the processing logic of this
vertex. Each edge inG has a partitioning function controlling the
data exchange between the operators. In the physical plan, the
vertices in G are replaced with the corresponding set of operators,
and the edges inG are replaced with a set of edges connecting these
operators. At runtime, when we instantiate a scope inG into scope
instances, every scope instance inherits the physical plan of the
scope. That is, every scope instance has a complete copy of the
corresponding operators and edges of its scope.

Banyan partitions the graph into tablets distributed across ex-
ecutors. A tablet contains an exclusive set of graph vertices and all
their in/out edges, along with their properties. We refer to vertices
in G that need to access graph data as graph-accessing vertices. To
exploit data locality, a graph-accessing vertex is parallelized into as
many operators as the number of tablets, and are mapped to the
executors hosting the tablets.

4.2 Executor Internals
Executors are single-threaded and each is pinned in a physical core.
Executors schedule their operators cooperatively, allowing Banyan
to concurrently process a large number of operators without facing
the bottleneck caused by context switch. Cooperative scheduling is

based on an asynchronous task-based programming interface. E.g.,
an operator blocked by an asynchronous I/O operation automati-
cally yields, and its executor schedules another operator ready for
execution. This way, Banyan can overlap CPU computation with
networking and I/O to improve the resource utilization.
ScopeOperator.To facilitate the scope-based scheduling in Banyan
(see Section 3.1), we introduce scope operators to manage the cre-
ation, termination and scheduling for all the operators of a scope.
On every executor containing operators of a scope S , we create a
scope operator managing all the local operators of S in this executor.
The scope operator of S is also managed by the scope operator of
S’s parent scope. This way, all the operators in an executor are
managed as a forest of operator trees. In each tree, the leaf nodes
are operators of vertices and the non-leaf nodes are the scope oper-
ators. Figure 3(b) shows the operator tree mapped from the scoped
data�ow in Figure 2(a). The operators in an executor are scheduled
hierarchically: (1) The executor schedules the root scope operators.
(2) When a scope operator of scope S is scheduled, it further sched-
ules its child (scope) operators following S’s inter-SI and intra-SI
scheduling policies.

Banyan enforces performance isolation in each single executor.
Scope operator is the basic unit of resource allocation: resources
allocated to scope operators at the same depth are isolated, and an
operator can only consume the resources allocated to its parent
scope operator. Once scheduled, an operator is assigned a quota
CPU time by its parent, which constrains the maximum amount of
CPU time this operator can use at this round of scheduling. The
vertex operator updates its quota after processing a message, and
yields once the quota is used up. By modeling di�erent queries
or tenants as the top-level scopes, Banyan can naturally support
performance isolation across queries or users.

4.3 Hierarchical Operator Management
In this subsection, we introduce how operators are addressed, cre-
ated and terminated in Banyan.
Operator Addressing. In Banyan, each operator has a unique
address, encoding the path from the executor to this operator in
the operator tree. The address consists of three parts:

hexec_id, (sop_id1, s1), · · · , (sop_idd , sd ), op_idi
where exec_id identi�es the hosting executor of the operator; op_id
represents the ID of the operator; (sop_id1, s1), · · · , (sop_idd , sd )
denotes the chain of ancestor scope operators (sop_idk ) and the
corresponding scope instance IDs (sk ). Actually, hs1, · · · , sd i is the
scope tag of the operator.

To facilitate hierarchical scheduling, each scope operator main-
tains a directory of its child operators as a pre�x tree, using the
addresses of child operators as the keys and the pointers to these
operators as the values. In the pre�x tree, the operators of a scope
instance are naturally grouped together as they share the same
pre�x in their addresses, and thus can be quickly located.
Operator Creation andTermination.Operator creation is event-
driven in Banyan. Sending a message to a non-existing operator
triggers the creation of this operator and all its non-existing ances-
tor scope operators. A scope operator provides a system-level API
TerminateScope(scope_instance_id) to terminate a scope instance.
Terminating a scope operator will terminate all its managed scope

2050



Table 2: Statistics of LDBC datasets

Dataset #Vertices #Edges CSV Size
LDBC-1 3, 181, 364 17, 299, 165 882M
LDBC-100 282, 637, 871 1, 777, 459, 239 88G

Table 3: Statistics of SE datasets

Dataset #Vertices #Edges dmax da�� CSV Size
LJ 4, 847, 571 43, 369, 619 20, 333 17.9 464M
OR 3, 072, 441 117, 185, 083 33, 313 38.1 1.7G
FS 65, 608, 366 1, 806, 067, 135 5, 214 27.5 31G

instances in cascade. Messages sent to terminated operators are ig-
nored. Banyan recycles objects used for operators through memory
management to avoid excessive memory allocations.

4.4 Parallelizing Progress Tracking
As explained in Section 3.2, progress tracking inside a scope requires
the ingress vertex to notify the egress vertex the number of scope
instances. When the ingress and egress vertices of a scope are
parallelized, a single ingress operator may not be aware of all the
scope instances in this scope. To tackle this problem, in a branch
scope, each ingress operator broadcasts to all the egress operators
the largest ID of scope instances it has instantiated. An egress
operator takes the maximum among these IDs as the total number
of scope instances to track. In a loop scope, every time when an
ingress operator sees only the EOS messages but no data message
from a speci�c loop iteration, it broadcasts the ID of this scope
instance to all the egress operators. If an egress operator receives
a speci�c scope instance ID from all the ingress instances, it can
conclude that this ID equals the number of scope instances.

To reduce the cost of operator instantiation, Banyan skips creat-
ing operators that only receive EOSmessages. EOSmessages sent to
non-existing operators are bu�ered in their parent scope operator.
If the operator is created later, these bu�ered EOS messages are
inserted into their mailboxes. Otherwise, the parent scope operator
emits EOS messages on behalf of the non-existing child operator
after receiving all the corresponding EOS messages.

4.5 Load Balancing
Realistic graphs are often scale-free, which may lead to a skewed
workload distribution among di�erent tablets. And this skewness
changes dynamically, as the graph accessing patterns of the incom-
ing queries continuously change. In graph queries, graph-accessing
operations are often the most costly part during the execution. To
facilitate load balancing between executors, we deliberately parti-
tion the graph into more tablets, and migrate tablets together with
their graph-accessing operators across executors. Upon migrating
a tablet, as graph traversal queries are usually short-lived, we do
not migrate the executing operators of existing queries, but only
redirect the incoming queries.

5 EVALUATIONS
We evaluate the performance of Banyan in the following aspects:

• (E1) We study the overall performance of Banyan by comparing
single-query latency with state-of-the-art graph query engines
(Section 5.2).

• (E2) We study the e�ects and overheads of scopes on query
performance, by comparing the scoped data�ow with the Timely
data�ow model (Section 5.3).

• (E3) We study how well Banyan can scale up in a many-core
server and scale out in a distributed cluster (Section 5.4).

• (E4) We study how well Banyan can enforce performance isola-
tion and load balancing (Section 5.5).

• (E5) We study the performance of Banyan on subgraph enumer-
ation workloads (Section 5.6).

5.1 Experiment Setup
Benchmarks.We use three benchmarks in the experiments: the
LDBC Social Network Benchmark [2, 19], the Complex Query(CQ)
benchmark and the subgraph enumeration (SE) benchmark.

LDBC is a popular benchmark of graph traversal queries. We
selected 12 queries (IC1 - IC12) from the 14 Interactive Complex
Read queries in the LDBC benchmark. IC13 and IC14 are excluded
as they both have shortest-path subqueries, which are typical graph
analytic queries. We use two LDBC datasets with scale factor 1 and
100, denoted as LDBC-1 and LDBC-100. Table 2 shows the statistics
of these two datasets. For each query on both datasets, we use the
LDBC generator to generate 50 parameters.

Real-world service scenarios (e.g. search engines) often select the
top-k results from a limited size of recalled candidates to guarantee
interactive response. This is di�erent from the query patterns in
LDBC (all LDBC queries require sorting the entire results). To better
study the e�ects of scopes, we compose the CQ benchmark with 6
queries (CQ1 - CQ6 in Appendix A) by adjusting the LDBC queries,
e.g., removing the sort operator. Each CQ query has 10 parameters
generated by the LDBC benchmark for both datasets.

The SE benchmark consists of two subgraph patterns (Figure 8(a)
and Figure 8(b)) and three real-world datasets: L� , OR and FS ob-
tained from [38]. Table 3 lists the statistics of these datasets.
System Con�gurations. All the experiments are conducted on a
cluster (up to 8 machines) where each machine has 755G memory
and 2 Intel Xeon Platinum 8269CY CPUs (each with 26 physical
cores and 52 hyper-threads).

For interactive graph traversal queries (LDBC and CQ bench-
marks), we choose four baseline systems from the most popular or
latest graph databases/engines: two single-machine ones—Neo4j
4.1.1 [26] and JanusGraph 0.5.0 [15], as well as two distributed
ones—TigerGraph 3.1.0 [39] and GAIA [32]. For subgraph enu-
meration (SE benchmark), we choose Huge [44], a state-of-the-art
subgraph enumeration system, as the baseline. We also compare
scoped data�ow with Timely data�ow [23] to study the e�ects
of scopes on query performance. Queries in the Timely data�ow
model are implemented using Banyan with scopes turned o�.

Unless explicitly explained, all the experiments are conducted in
a container which has 32 cores and 700G memory. We con�gure
a cache size (if available) large enough to store the entire datasets.
We build the same set of indexes for all systems, i.e., a primary
index on vertex ID for each type of vertices. In graph databases, we
execute queries without transactions or as read-only transactions to
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Figure 4: (a) Query latency on a single machine with 32 cores. (b) Query latency in a 4-node cluster (each node has 8 cores).

minimize the transaction overhead. Con�gurations of the baselines
are as follows:
• Neo4j 4.1.1. We use 32 worker threads and turn on query cache.
• JanusGraph 0.5.0. We use BerkeleyJE 7.5.11 [29] as the storage.
• TigerGraph 3.1.0. The distributed query mode is used in the dis-
tributed experiments. TigerGraph requires installing a query
before execution, and the installation takes much more time
(more than 1 min on average) than query execution. We exclude
the installation time in the reported results.

• GAIA is only experimented on a subset of the LDBC and CQ
queries, as it does not support IC4, IC10, CQ2, CQ4 and CQ5 2.
The number of workers is set to 32 in GAIA.

• Huge is only experimented on the SE benchmark. The graphs are
stored in the format of compressed sparse row (CSR) in memory.

• Banyan. We use a C++ version of the backend storage used by
JanusGraph (BerkeleyDB 18.1.32 [30]), and directly import the
databases exported from JanusGraph. For each dataset, Banyan
randomly partitions the graph into 64 tablets. We apply loop
scope on all the repeat subqueries and branch scope on where
subqueries whose branches can be early canceled. Unless other-
wise speci�ed, we use 32 executors for query execution. In the
SE benchmark, Banyan uses the same in-memory CSR to store
graphs as Huge does.

Experiment Methodology. To control query submission, we ex-
tend the LDBC client to allow specifying the number of concurrent
queries (W ) a client can submit. Once started, the client tries to
submit as many queries as possible, but under the constraint ofW .
If the threshold ofW has been reached, a new query will only be
submitted after the completion of a previous one. Unless explicitly
speci�ed, we useW = 1 throughout the experiments. As LDBC/CQ
queries are templates, unless otherwise speci�ed, we follow the
LDBC benchmark convention and for each query report the av-
erage latency of all the parameters. Throughout this section, for
each data point we run the corresponding experiment 10 times to

2The authors of GAIA con�rmed that their compiler is still under development and
cannot support some Gremlin operators like sideE�ect and store.

warm up the system, and collect the results from the following 10
runs. We report the minimum, maximum, and average values of
the 10 results in the �gures. Traversal queries that run longer than
60 seconds are marked as timeout.

5.2 Overall System Performance
In this section, we study the performance of Banyan by comparing
its single-query latencies on both the LDBC and CQ benchmarks
with baseline systems.
Single-machine. In this experiment, we use the LDBC-1 dataset
so that baselines like JanusGraph can �nish most queries before
timeout. The results are depicted in Figure 4(a).

On the LDBC queries, Banyan has 5X to three orders of mag-
nitude latency improvement over all the baseline systems except
for TigerGraph. Banyan outperforms TigerGraph by up to 14X for
10 out of the 12 LDBC queries (including all the large queries),
and is slightly slower on IC3 and IC6 (both are small queries). As
TigerGraph is not open-sourced, we cannot analyze how the query
installation helps in query execution. This results demonstrates
that Banyan can well utilize the many-core parallelism.

On the CQ queries which can bene�t more from the scoped
data�ow, the advantage of Banyan further widens, e.g., up to 130X
and 726X faster than TigerGraph and GAIA, respectively. This
improvement is led by the �ne-grained control and scheduling
enabled by scoped data�ow: (1) subquery traversals (where sub-
queries in CQ3, CQ4, CQ5 and CQ6) can be early canceled, and (2)
customized scope-level scheduling policies (e.g., DFS in the loop
of CQ1 and BFS in the loop of CQ2) can trigger the (sub-)query
cancellation earlier. GAIA mixes messages of di�erent “context” in
the same execution pipeline, and thus cannot e�ciently perform
traversal-level early cancellation. This ine�ciency is re�ected by
the performance of GAIA on CQ1 and CQ6. In addition, GAIA can-
not con�gure scope-level scheduling policies, which in�uences its
performance on CQ3 and CQ6. As JanusGraph and Neo4j cannot
parallelize queries starting from a single vertex, we also present
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Figure 5: (a) The per-parameter latency speedups of scoped data�ow compared to Timely. (b) The per-parameter latency
speedups of the best-case scheduling policy compared to the FIFOpolicy. (c) The overheads of scope instantiationwhenMAX_SI
is set to 1 and unlimited. The (d) throughput and (e) latency of Banyan under di�erent numbers of concurrent queries.

the single-thread performance of Banyan, which outperforms the
both systems on all queries.
Distributed. For the distributed experiment, we use the LDBC-100
dataset and a cluster of 4 worker nodes each hosting a container
of 8 cores. As Figure 4(b) shows, Banyan outperforms TigerGraph
by 5X to 40X on the LDBC benchmark, and 2X to three orders
of magnitude on the CQ benchmark. These results are consistent
with the single-machine experiment, as the bene�ts of e�ciently
utilizing hardware parallelism and the scoped data�ow are still
tenable in the distributed environment. Banyan is faster than GAIA
on most of the LDBC queries and all the CQ queries, except for
three small queries (IC2, IC7 and IC8). This is because the graph
partitioning in Banyan can incur some overhead due to message
passing between executors.

5.3 Benchmark on Scoped Data�ow
In this section, we use the CQ benchmark on the LDBC-100 dataset
to study: (1) the e�ects of scoped data�ow, (2) the e�ects of sched-
uling policy and (3) the overhead of scope instantiation.We run each
querywith ten di�erent parameters, compute the speedup(overhead)
between di�erent competitors on each parameter, and report the
boxplot of all the per-parameter speedups(overheads).
E�ects of Scoped Data�ow. We evaluate the speedups of scopes
by comparing it against Timely. Figure 5(a) shows that the e�ects
of scoped data�ow are:
• Query-dependent. On average, the scoped data�ow brings 1.3X
to 36X latency improvement compared to Timely. The speedup
onCQ1 is relatively small, asCQ1 has no subquery which can be
early canceled, and its speedup mainly comes from scope-level
scheduling policy, i.e., using DFS in the loop subquery. On the
other hand, asCQ4 contains a where subquery nested with a loop
subquery, canceling a where traversal saves a huge amount of
computation.

• Data-dependent. The speedup of scoped data�ow varies on di�er-
ent parameters, e.g., 14X to 86X onCQ4. This is because di�erent
traversals of the where subquery inCQ4 have very di�erent costs.

The optimal scoped data�ow plan should be determined by a query
compiler according to the query structure and data statistics.
E�ects of Scheduling Policy. In this experiment, we select CQ6
and compare the latency of CQ6 in Banyan between two cases: (1)
the best-policy case where the intra-SI policy of the query and the
where subquery are both set to DFS, and (2) the FIFO case where all
the scheduling policies are set to FIFO in the query. We vary n in

CQ6’s limit(n) clause from 1 to 104. Figure 5(b) shows the boxplots of
speedups brought by best-policy over FIFO. By increasing the value
of n from 1 to 104, the speedup of best-policy widens from 1.8X to
3.5X. This is because FIFO schedules more wasted traversals(no �nal
output), and this wastage becomes worse when the number of total
traversals increases. Similar e�ects can be observed in other CQ
queries and thus omitted. This experiment shows that customized
scheduling policy is necessary for graph queries.
Overhead of Scope Instantiation. To quantify the overhead of
scope instantiation, we turn o� early cancellation in Banyan, use
purely FIFO for scheduling, and compare its single query latencies
with Timely. We experiment onCQ3,CQ5 andCQ6, as these queries
contains where subqueries that can instantiate a large number of
scope instances. We remove the limit clause in these queries such
that Banyan and Timely perform the same number of traversals.

Figure 5(c) shows that, without limiting MAX_SI, Banyan is on
average 25% slower than Timely, as Banyan su�ers from extra sched-
uling overheads among SIs and a high memory pressure. Setting
MAX_SI in Banyan to 1 shrinks the gap to 13%. Note that MAX_SI
is an executor-local con�guration. With 32 executors running in
parallel, setting MAX_SI to 1 allows Banyan to instantiate at most
32 concurrent SIs of a scope, which is enough to saturate the multi-
core parallelism. This experiment shows that the overhead of scope
instantiation is limited compared with the bene�ts of scopes as
shown in the �rst experiment of E2.

5.4 Scalability of Banyan
In this set of experiments, we use both the CQ and LDBC bench-
marks with the LDBC-100 dataset.
Scale-Up. In this experiment, we use a single container and vary
the number of cores from 1 to 64, and report the query latency of
Banyan in Figure 6(a). We can see that the query latency scales
almost linearly up to 32 cores. This is because Banyan can e�ciently
parallelize a scoped data�ow into �ne-grained operators and evenly
distribute them across executors. The performance improvement
of Banyan stagnates when scaling up from 32 cores to 64 cores, as
the per-executor workload becomes too small to fully utilize the
computation resources, and the hyper-threading has a negative
impact on the cache locality.
Scale-Out. In Figure 6(b), we study the scale-out performance of
Banyan. We use a container of 8 cores, and increase the number of
containers from 1 to 8. By increasing the number of containers, the
latencies of large queries (e.g., IC3, IC5, IC6 and IC9) decrease in
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Figure 6: (a) The scale-up performance of Banyan with increasing number of executors on a single machine. (b) The scale-out
performance of Banyan with increasing number of worker nodes in the cluster.

(a) (b) (c) (d)

Figure 7: The latency of Banyan, TigerGraph, GAIA and Neo4j under di�erent concurrent workloads: (a) the latency of small
queries and (b) the latency of large queries. (c) The latencyCDF of the foreground query under di�erent backgroundworkloads.
(d) The throughput and latency of Banyan before and after load balancing.

a nearly linear manner. This shows that the scoped data�ow can
be well parallelized in a distributed environment. For small queries
(e.g., IC1, IC2, IC10, IC11 and CQ4) with limited computation to
distribute, scaling out results in slightly worse query latency due
to the increased network communication cost.
Scalability with Concurrent Queries. In this experiment, we
use IC6 with a �xed parameter to isolate the latency di�erence
caused by di�erent queries and parameters. We varyW , the sub-
mission concurrency of the client, from 1 to 32. Figure 5(d) and 5(e)
show Banyan’s throughput and latency. As shown in Figure 5(d),
by increasing the number of concurrent queries, Banyan can pro-
vide a stable throughput (less than 2% throughput decrease when
W = 32). The query latency is increasing linearly with more con-
current queries executing in the system (Figure 5(e)). These results
clearly show that Banyan can fairly allocate the CPU time among
concurrent queries, and incur little overhead.

5.5 Performance Isolation & Load Balancing
In this subsection, we study the performance isolation and load
balancing in Banyan. In the following experiments, we use a �xed
parameter for each selected query.

Performance Isolation. First, we compare the performance iso-
lation in Banyan, Neo4j, TigerGraph and GAIA under the LDBC
benchmark using LDBC-1. We simulate a mixed workload of large
queries (IC9) and small queries (IC1), and vary the submission con-
currencyW from 32 to 128. For eachW , W2 large queries and W

2
small queries are concurrently executing in the system. The la-
tencies of small and large queries are depicted in Figure 7(a) and
Figure 7(b) , respectively. The results show that Banyan provides on
average 2X-23X better latencies for small queries compared with
the baselines (Figure 7(a)), and 3X-30X performance boost on large
queries compared with GAIA and Neo4j (Figure 7(b)). TigerGraph
runs 50% faster than Ban�an on the large queries, but sacri�ces its
performance on small queries (on average 3.3Xworse than Banyan).
Note that for eachW , small queries and large queries are executing
concurrently in the system. As TigerGraph cannot well isolate the
resource consumption among concurrent queries, the progress of
small queries are heavily blocked by the large queries. The stability
of query latency in TigerGraph is also much worse than Banyan.
In Figure 7(a), whenW is set to 128, the latency of TigerGraph �uc-
tuates at a range of nearly 3000ms on small queries. In comparison,
Banyan only �uctuates within 50ms.
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Figure 8: Subgraph patterns (a) SP1 and (b) SP2; The perfor-
mance of Banyan and Huge on (c) SP1 and (d) SP2.

In the second experiment, we conduct a controlled experiment
on how background workload impacts a foreground query. We
generate a background workload of di�erent queries using the
LDBC-100 dataset, i.e., of purely large queries (IC9) or purely small
queries(IC10), and vary the concurrencyW from 1 to 4. While the
background queries are executing, we submit a small foreground
query (IC1). For each background con�guration, we submit the
foreground query for 100 times and plot the CDF of the query
latency in Figure 7(c). We also plot the foreground latency without
any background workload (No-BG). WhenW is �xed, the latency
of the foreground query is quite stable. Changing the background
workload from small queries (BG-S) to large queries (BG-L) has
negligible impact on the latency of the foreground query. E.g., the
95% percentile latency of the foreground query is only increased
by 3.5% (resp. 9.5%) forW = 1 (resp.W = 4).

The above two experiments show that Banyan can enforce per-
formance isolation so that large queries will not block small queries.
Load Balancing.We simulate a skewed workload to evaluate load
balancing in Banyan. The 64 tablets of LDBC-100 dataset are dis-
tributed among 8 executors in a skewedmanner: evenly distributing
48 tablets on 4 executors and the rest on the others. We repeatedly
submit IC6 every 270ms. At t1 (around 9, 000ms), we re-balance the
distribution of tablets such that each executor has 8 tablets. At t2
(around 17, 000ms), we set the submission interval to 210ms. The
latency and throughput are reported in Figure 7(d). We can see
the query latency continuously increases when the workload is
skewed. After the re-balance (t1), the query latency immediately
drops, and restores to a stable level (around 200ms) after 3000ms.
The throughput �rst bursts as Banyan is clearing the bu�ered work.
After increasing the input rate at t2, the throughput increases to
nearly 1.3X of the initial level, while the latency remains stable.

5.6 Subgraph Enumeration
In this experiment, we compare Banyan and Huge on the SE bench-
mark. The both systems are deployed in a cluster of two 8-core
containers. As SP1 and SP2 have no subquery structures, scopes are
turned o� in Banyan. As Figure 8 shows, Banyan outperforms Huge
by 2.2X on query execution time. This is because Banyan can well
leverage the many-core parallelism. Parallelizing subgraph enumer-
ation queries in the distributed environment requires transferring
huge amount of data. Huge optimizes this cost using its hybrid
push/pull mechanism. Di�erently, Banyan adopts the push-based
model to optimize latencies for interactive graph traversal queries.

6 RELATEDWORK
Graph Databases and Graph Engines Neo4j [26], Neptune [27],
TinkerPop [40] and JanusGraph [15] are single-machine graph
databases. TinkerPop, JanusGraph and Neptune only utilize mul-
tiple threads for inter-query parallelization [16, 28, 41]. Neo4j can
only parallelize top-level traversals starting from di�erent ver-
tices inside a query. Distributed graph databases [10, 31, 39] are
mainly optimized for OLTP queries. Di�erently, Banyan focuses on
read-only graph traversal queries. Grasper [8] proposes the Expert
model to support adaptive operator parallelization. As Grasper uses
the same set of experts for concurrent queries, it cannot support
�ne-grained control and performance isolation as Banyan does.
GAIA [32] introduces virtual scope to facilitate data dependency
tracking in graph queries, such that nested subqueries can be cor-
rectly parallelized. Note that their scope is a logical concept to an-
notate subquery traversals. GAIA compiles queries into topo-static
data�ows, and thus su�ers the limitations discussed in Section 2.

G-SPARQL [34], Trinity.RDF [45] and Wukong [36] target for
SPARQL queries. G-SPARQL [34] uses a hybrid query execution
engine that can push parts of the query plan into the relational
database. Trinity.RDF [45] utilizes graph exploration to answer
SPARQL queries. Wukong [36] supports concurrent execution of
sub-query. The subquery in Wukong [36] is generated statically
and is of coarser granularity than scope instances, and thus cannot
support goal O1 (see Section 2) required by a GQS.

Graph analysis systems like Pregel [21], PowerGraph [11, 20]
and GraphX [12] are all inspired by the BSP model. These systems
often access the entire graph for multiple iterations to answer a
query. Di�erently, interactive graph traversal queries usually start
from one or a handful of vertices, traverse a few hops and only
access a very limited part of the graph. The per-iteration global
synchronization in the BSP model makes it di�cult to ful�ll the
stringent latency requirement of interactive graph traversal queries.
Data�ow Engines. Data�ow systems such as [4, 5, 14] adopt BSP
paradigm, and do not support cycles. Flink [3] supports cycles but
requires barrier synchronization between loop iterations. Naiad [23]
proposes the Timely data�ow model for iterative and incremental
computations, but cannot support branch scopes for where sub-
queries as Banyan does. All the above data�ows are topo-static
data�ow models. Cilk [6] and CIEL [24] support dynamic data�ows,
but only at the level of coarse-grained tasks. This design may in-
cur huge overhead to control nimble tasks like scope instances
in scoped data�ow. Compared to existing data�ow models, the
scoped data�ow model allows concurrent execution and indepen-
dent control on the replicated execution pipelines, and provides a
new way to support loops in data�ow, allowing users to control
the scheduling policy in cyclic computation.
Subgraph Matching Systems. Subgraph queries usually have no
subquery structure and cannot be canceled early. RapidMatch [37]
compares the exploration-based and join-based approaches on sub-
graph queries, and proposes a join-based engine, utilizing graph
structural information for �ltering and plan generation. [18] im-
plemented a set of representative algorithms and optimizations to
study their e�ectiveness. Huge [44] is a join-based subgraph enu-
meration system. It considers the variance of join algorithms and
communication modes (pull or push) to optimize the query plan.
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Huge uses an adaptive BFS/DFS scheduler to improve the resource
utilization under memory constraints. Di�erently, Banyan proposes
scoped data�ow to support �ne-grained control and scheduling for
latency-sensitive graph traversal queries. All these systems do not
consider performance isolation for concurrent query execution.
Pull vs. Push-Based Query Engines. In pull-based engines [33,
42], operators pro-actively request data from their predecessors.
This eases the control logics like backpressure. In push-based en-
gines [1, 17], operators push their results to the destination opera-
tors, which leads to a simpler control �ow with less loops and more
opportunities for sharing and pipelining the intermediate results.
Banyan is an event-driven engine. The instantiation and schedul-
ing of operators are driven by the outputs of their predecessors.
Therefore, Banyan can only adopt the push-based model.

7 CONCLUSIONS AND FUTUREWORK
We present a novel scoped data�owmodel, and a new engine named
Banyan built on top of it for GQS. Scoped data�ow targets at solv-
ing the need for sophisticated �ne-grained control and scheduling
in order to ful�ll stringent query latency and performance iso-
lation in a GQS. We demonstrate through Banyan that the new
data�ow model can be e�ciently parallelized, showing its scale-up
ability on modern many-core architectures and scale-out ability
in a cluster. The comparison with the state-of-the-art graph query
engines shows Banyan can provide at most 3 orders of magnitude
query latency improvement, very stable system throughput and
performance isolation. Besides graph queries, the scoped data�ow
model can also be applied to general service scenarios that involve
complex processing pipelines and require delicate control of the
pipeline execution.

A COMPLEX QUERIES
Complex Query 1.
g.V(person_id)

.repeat(__.out(‘knows’)).times(5)

.dedup().limit(n)

CQ1: Given a start person, �nd persons that the start person is
connected to by exactly 5 steps. Return n distinct person IDs.

Complex Query 2.
g.V(person_id)

.sideEffect(out(‘workAt’)

.store(‘companies’))

.repeat(__.out(‘knows’))

.times(5)

.emit(__.out(‘workAt’)

.where(within(‘companies’))

.count().is(gt(0)))

.dedup().limit(n)

CQ2: Given a start person, �nd persons that the start Person is
connected to by at most 5 steps. Only persons that workAt the same
company with the start person are considered. Return n distinct
person IDs.

Complex Query 3.
g.V(person_id)

.out(‘knows’).union(identity(), out(‘knows’))

.dedup()

.where(__.in(‘hasCreator’).out(‘hasTag’)

.out(‘hasType’).values(‘name’)

.filter{it.get().contains(‘Country’)})

.order().by().limit(n)

CQ3: Given a start person, �nd persons that are his/her friends
and friends of friends. Only consider persons that have created
messages with an attached ‘Country’ tag. Sort the persons by their
IDs and return the top-n person IDs.

Complex Query 4.
g.V(person_id)

.sideEffect(out(‘workAt’)

.store(‘companies’))

.out(‘knows’)

.where(__.repeat(__.out(‘knows’))

.times(4)

.emit(__.out(‘workAt’)

.where(within(‘companies’))

.count().is(gt(0)))

.dedup().count().is(gt(0)))

.limit(n)

CQ4: Given a start person, �nd persons that are his/her friends. Only
persons that meet the following constraints are considered: for each
S_person in persons, �nd S_persons that S_person is connected to
by at most 4 steps; If any person in S_persons workAt the same
company as the start person, S_person is selected as a candidate
result. Return n distinct person IDs.

Complex Query 5.
g.V(person_id)

.sideEffect(out(‘workAt’)

.store(‘companies’))

.repeat(__.out(‘knows’))

.times(5)

.emit(__.out(‘workAt’)

.where(within(‘companies’))

.count().is(gt(0)))

.dedup()

.where(__.in(‘hasCreator’).out(‘hasTag’)

.out(‘hasType’).values(‘name’)

.filter{it.get().contains(‘Country’)})

.limit(n)

CQ5: Given a start person, �nd persons that the start person is
connected to by at most 5 steps and workAt the same company
with the start person. Only consider persons that have created
messages with an attached tag of class ‘Country’. Return n distinct
person IDs.

Complex Query 6.
g.V(person_id)

.repeat(__.out(‘knows’)

.where(__.in(‘hasCreator’)

.out(‘hasTag’).out(‘hasType’)

.values(‘name’).filter{it.get()

.contains(‘Country’)}))

.times(5).dedup().limit(n)

CQ6: Given a start person, �nd persons that the start person is
connected to by exactly 5 steps. Only persons that meet the fol-
lowing constraints are considered: for each S_person in persons, if
every I_person in the path from the start person to S_person has
created Messages with an attached tag of class ‘Country’, S_person
is selected as a candidate result. Return n distinct person IDs.
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