
MICROREC: EFFICIENT RECOMMENDATION INFERENCE
BY HARDWARE AND DATA STRUCTURE SOLUTIONS

Wenqi Jiang 1 2 Zhenhao He 1 Shuai Zhang 1 Thomas B. Preußer 1 Kai Zeng 3 Liang Feng 3 Jiansong Zhang 3

Tongxuan Liu 3 Yong Li 3 Jingren Zhou 3 Ce Zhang 1 Gustavo Alonso 1

ABSTRACT
Deep neural networks are widely used in personalized recommendation systems. Unlike regular DNN inference
workloads, recommendation inference is memory-bound due to the many random memory accesses needed to
lookup the embedding tables. The inference is also heavily constrained in terms of latency because producing a
recommendation for a user must be done in about tens of milliseconds. In this paper, we propose MicroRec, a
high-performance inference engine for recommendation systems. MicroRec accelerates recommendation inference
by (1) redesigning the data structures involved in the embeddings to reduce the number of lookups needed and
(2) taking advantage of the availability of High-Bandwidth Memory (HBM) in FPGA accelerators to tackle the
latency by enabling parallel lookups. We have implemented the resulting design on an FPGA board including
the embedding lookup step as well as the complete inference process. Compared to the optimized CPU baseline
(16 vCPU, AVX2-enabled), MicroRec achieves 13.8∼14.7× speedup on embedding lookup alone and 2.5∼5.4×
speedup for the entire recommendation inference in terms of throughput. As for latency, CPU-based engines needs
milliseconds for inferring a recommendation while MicroRec only takes microseconds, a significant advantage in
real-time recommendation systems.

1 INTRODUCTION
Personalized recommendations are widely used to improve
user experience and increase sales. Nowadays, deep learn-
ing has become an essential building block in such systems.
For example, Google deploys wide-and-deep models for
video and application recommendations (Cheng et al., 2016;
Zhao et al., 2019); Facebook uses different kinds of deep
models for a range of social media scenarios (Gupta et al.,
2020b); and Alibaba combines attention mechanism with
DNNs and RNNs for online retail recommendations (Zhou
et al., 2018; 2019). Due to the popularity of DNN-based
recommendation models, they can comprise as much as 79%
of the machine learning inference workloads running in data
centers (Gupta et al., 2020b).

Deep Recommendation Models We first briefly intro-
duce deep recommendation models to provide the necessary
context to discuss the challenges, our methods, and contribu-
tions. Figure 1 illustrates a classical deep recommendation
model for Click-Through Rate (CTR) prediction (Gupta
et al., 2020b; Cheng et al., 2016) and summarize its work-
load characteristics. An input feature vector consists of
dense features (e.g., age and gender) and sparse features

1ETH Zurich 2Columbia University 3Alibaba Group. Corre-
spondence to: Wenqi Jiang <wenqi.jiang@inf.ethz.ch>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

(e.g., location and advertisement category). Over the dense
feature vector, some systems apply a neural feature extractor
that consists of multiple fully connected (FC) layers (Gupta
et al., 2020b; Kwon et al., 2019), while some design (Cheng
et al., 2016) does not contain the bottom FC layers. Over the
sparse feature vector, the system translates each feature into
a dense feature embedding by looking up it in an embedding
table. These features are then combined (e.g., concatenated)
and fed to a neural classification model consisting of multi-
ple fully connected layers.

Challenges in a CPU-based System When deploying
recommendation systems on typical CPU servers (left half
of Figure 2), embedding tables are stored in DDR DRAM,
and the cores are responsible for the computation. There are
two system bottlenecks in such deployments.

First, embedding table lookups are costly because they in-
duce massive random DRAM accesses on CPU servers.
Production recommendation models usually consist of at
least tens of embedding tables, thus each inference requires
the corresponding lookup operations. Due to the tiny size of
each embedding vector, the resulting DRAM accesses are
nearly random rather than sequential. Since CPU servers
have only a few memory channels, these random DRAM
accesses are expensive.

Second, both embedding lookups and computation can be ex-
pensive if one resorts to ML frameworks such as TensorFlow

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Figure 1. A typical deep recommendation model and it’s workload specification.

Figure 2. Two hardware choices for recommendation inference. Left: a typical CPU server on which models are stored in DDR DRAM
(memory channel number varies from server to server) and computation is done in CPU. Right: our FPGA accelerator where embedding
tables are distributed over many memory channels and fast inference is supported by reprogrammable circuit.

and PyTorch. According to our observations, on TensorFlow
Serving which is optimized for inference, the embedding
layer involves 37 types of operators (e.g., concatenation
and slice) and these operators are invoked multiple times
during inference, resulting in significant time consumption
especially in small batches. Similarly, the throughput of
neural network computation can also be restricted when
using small batches. Unfortunately, small batch sizes are
usually required in CPU-based recommendation engines to
meet the latency requirements of tens of milliseconds, thus
the framework overhead is non-negligible.

Not surprisingly, there has been a range of work trying
to accelerate deep recommendation models. Kwon et al.
(2019) and Gupta et al. (2020b) observed the main system
bottleneck of substantial random memory accesses. Kwon
et al. (2019) and Ke et al. (2020) thus proposed to redesign
DRAM in micro-architectural level; however, it would take
years to put such new DRAM chips in production even if
they are adopted. Gupta et al. (2020a) suggested GPUs
could be useful in recommendation for large batches, but
the memory bottleneck still remains and GPUs suffer from
high latency. Similarly, Hwang et al. (2020) implemented
an FPGA accelerator for recommendation but without re-
moving the memory bottleneck. In this paper, we ask: Can
we accelerate deep recommendation models, at industrial
scale, with practical yet efficient hardware acceleration?

Our Approach Based on careful analysis of two
production-scale models from Alibaba, we design and im-
plement MicroRec, a low-latency and high-throughput rec-
ommendation inference engine. Our speed-ups are rooted
in two sources. First, we employ more suitable hardware
architecture for recommendation with (a) hybrid memory
system containing High Bandwidth Memory (HBM), an
emerging DRAM technology, for highly concurrent embed-
ding lookups; and (b) deeply pipelined dataflow on FPGA
for low-latency neural network inference. Second, we revisit
the data structures used for embedding tables to reduce the
number of memory accesses. By applying Cartesian prod-
ucts to combine some of the tables, the number of DRAM
accesses required to finish the lookups are significantly re-
duced .

Our contributions in this paper include:

1. We show how to use high-bandwidth memory to scale
up the concurrency of embedding lookups. This introduces
8.2∼11.1× speedup over the CPU baseline.

2. To the best of our knowledge, this is the first paper that
proposes to reduce the number of random memory accesses
in deep recommendation systems by data structure design.
We show that applying Cartesian Products between embed-
ding tables further improves the lookup performance by
1.39∼1.69× with marginal storage overhead (1.9∼3.2%).

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

3. To optimize performance with low storage overhead, we
propose a heuristic algorithm to combine and allocate tables
to the hybrid memory system on the FPGA.

4. We implement MicroRec on FPGA and test it on two
production models from Alibaba (47 tables, 1.3 GB; 98
tables, 15.1 GB). The end-to-end latency for a single infer-
ence only consumes 16.3∼31.0 microseconds, 3 to 4 orders
of magnitude lower than common latency requirements for
recommender systems. In terms of throughput, MicroRec
achieves 13.8∼14.7× speedup on the embedding layer, and
2.5∼5.4× speedup on the complete inference process com-
pared to the baseline (16 vCPU; 128 GB DRAM with 8
channels; AVX2-enabled).

2 DEEP RECOMMENDATION SYSTEMS

Personalized recommendation systems are widely deployed
by YouTube (Covington et al., 2016; Zhao et al., 2019),
Netflix (Gomez-Uribe & Hunt, 2015), Facebook (Park et al.,
2018), Alibaba (Zhou et al., 2018; 2019), and a number
of other companies (Underwood, 2019; Xie et al., 2018;
Chui et al., 2018). In this section, we review their basic
properties and analyze their performance to identify the
main bottlenecks.

2.1 Deep Model for Ranking

Figure 1 abstracts the deep model for recommendation rank-
ing that we target: it is responsible for predicting click-
through-rates (CTR), i.e., how likely it is that the user will
click on the product. The model takes a set of sparse and
dense features as input. For example, account IDs and re-
gion information are encoded as one-hot vector (sparse fea-
ture), while age serves as part of the dense feature since the
number is consecutive. The prediction process is as follows.
First, dense and sparse input features are processed sepa-
rately. Depending on the model design, dense features can
be processed by a few fully-connected layers (Naumov et al.,
2019) or served as-is without any pre-processing (Cheng
et al., 2016; Zhou et al., 2018). The sparse features, on
the other hand, are converted to a set of indexes to lookup
vectors from embedding tables. For each inference task, one
or several vectors are retrieved from each table (Gupta et al.,
2020b). The embedding vectors so retrieved are then con-
catenated with raw or processed dense features. Finally, the
concatenated vectors are fed to the top fully-connected lay-
ers for CTR prediction. Product candidates with the highest
CTRs are recommended to users.

The specific model design varies from scenario to sce-
nario. Some adjustable parameters include: number of
fully-connected layers, number of hidden neurons in each
layer, numbers and sizes of embedding tables, feature inter-
action operations (e.g., concatenation, weighted sum, and

Figure 3. The embedding layer is expensive during inference.

element-wise multiplication), whether to include bottom
fully-connected (FC) layers.1

2.2 Embedding Table Lookups

Embedding table lookup is the key difference between deep
recommendation models and regular DNN workloads, and
it shows the following traits. First, the embedding tables
contribute to the majority of storage consumption in deep
recommendation models. Large embedding tables at indus-
try scale can contain up to hundreds of millions of entries,
consuming tens or even hundreds of gigabytes of storage.
Second, the size of the tables varies wildly between a few
hundred (e.g., countries or “province ID”) to hundreds of
millions of entries (e.g., “user account ID”).

Embedding table lookup is problematic from a performance
perspective. Due to the traits mentioned above, most tables
are held in main memory, inducing many random memory
accesses during inference. Ke et al. (2020) proves this point
by showing that high cache miss rates are common in deep
recommendation inference.

2.3 Performance Analysis

We chose CPUs as the hardware platform for baseline ex-
periments. Although GPUs are popular for neural network
training, they have not shown clear advantages over CPUs
for deep recommendation inference. As reported by Gupta
et al. (2020a), GPUs can only outperform CPUs when (a) the
model is computation-intensive (less embedding lookups),
and (b) very large batch sizes are used.

Figure 3 shows the cost of the embedding layer during
inference on two models from Alibaba (models specified in
Table 1) . As a side effect of the massive number of memory
accesses, the many related operators also lead to significant
overhead. According to our observation on TensorFlow
Serving, an optimized ML framework for inference, 37 types
of operators are involved in the embedding layer (e.g., slice

1The models we target do not contain bottom FCs, and each
table is looked up only once.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Figure 4. System overview of MicroRec.

and concatenation), and these operators are invoked many
times during inference. The close latency to infer small
batches (size of 1 and 64) illustrates the expense of operator-
calls. Larger batch sizes can lead to better throughput, yet
SLA (latency requirement) of tens of milliseconds must
be met, thus extremely large batches are not allowed for
recommendations.

3 MICROREC

We present MicroRec, an FPGA-enabled high-performance
recommendation inference engine which involves both hard-
ware and data structure solutions to reduce the memory
bottleneck caused by embedding lookups. On the hardware
side, our FPGA accelerator features highly concurrent em-
bedding lookups on a hybrid memory system (HBM, DDR
DRAM, and on-chip memory). On the data structure side,
we apply Cartesian products to combine tables so as to re-
duce random memory accesses. Putting them together, we
show how to find an efficient strategy to combine tables and
allocate them across hybrid memory resources.

3.1 System Overview

Figure 4 overviews the hardware design of MicroRec. Em-
bedding tables are distributed over both on-chip memory
(BRAM and URAM) and off-chip memory (HBM and
DDR). Neural network inference is taken cared by the DNN
computation units which contain both on-chip buffers stor-
ing weights of the model and computation resources for fast
inference. To conduct inference, the host server first streams
dense and sparse features to the FPGA2. Then, the embed-
ding lookup unit translates the sparse features to dense vec-
tors by looking up embedding tables from both on-chip and
off-chip memory. Finally, the computation unit takes the
concatenated dense vector as input and finishes inference
before returning the predicted CTR to the host.

3.2 Boost Emebdding Lookup Concurrency by
Increased Memory Channels

The tens of embedding table lookup operations during infer-
ence can be parallelized when multiple memory channels

2The Vitis hardware development platform does not yet support
streaming from the host server to a Xilinx U280 FPGA, thus we
have prototyped the design by caching the input features on FPGA.

Figure 5. Cartesian product of two embedding tables. Each entry
of the product concatenates an entry from table A and another from
B: one memory access retrieves two embedding vectors.

are available. MicroRec resorts to high-bandwidth memory
as the main force supporting highly concurrent embedding
lookups. Besides that, we also take advantage of other mem-
ory resources on FPGA, i.e., DDR4 DRAM and on-chip
memory, to further improve lookup performance.

3.2.1 High-Bandwidth Memory

We resort to HBM to parallelize embedding lookups. As
an attractive solution for high-performance systems, HBM
offers improved concurrency and bandwidth compared to
conventional DRAMs (Jun et al., 2017; O’Connor, 2014).
In this paper, we use a Xilinx Alveo U280 FPGA card (xil)
equipped with 8 GBs of HBM which provides a bandwidth
of up to 425 GB/s (Wang et al., 2020). More specifically,
the HBM system on U280 consists of 32 memory banks,
which can be accessed concurrently by independent pseudo-
channels. Thus, embedding tables can be distributed to these
banks so that each bank only contains one or a few tables,
and up to 32 tables can be looked up concurrently.

3.2.2 Hybrid Memory System on FPGA

The Xilinx Alveo U280 FPGA involves multiple types of
memory resources, including on-chip memory (BRAM and
URAM) and off-chip memory (DDR4 DRAM and HBM),
which exhibit different traits. HBM and DDR show close
access latency of a couple of hundreds of nanoseconds given
the memory controller generated by Vitis (Kathail, 2020),
but have different concurrency-capacity trade-off (HBM:
32 channels, 8GB; DRAM: 2 channels, 32 GB). Besides
HBM and DDR, FPGAs also equip a few megabytes of
on-chip memory that plays a similar role as CPU cache
(small yet fast memory to cache frequently-accessed data
or intermediate results).Without read initiation overhead
as in DRAM, the latency to access on-chip memory only
consists of control logic and sequential read. According to
our experiments, finish retrieving an embedding vector from
an on-chip memory bank only consumes up to around 1/3
time of DDR4 or HBM.

3.3 Reduce Memory Accesses by Cartesian Products

We reduce the number of memory accesses by combining
tables so that each memory access can retrieve multiple

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

embedding vectors. As shown in Figure 5, two embedding
tables can be joined into a single larger one through a rela-
tion Cartesian Product. Since tables A and B in Figure 5
have two entries, the product table ends up with four entries:
each of them is a longer vector obtained by concatenating
an entry from table A and another from table B. Using such
a representation, the number of memory accesses is reduced
by half: instead of two separate lookup operations now only
one access is needed to retrieve the two vectors.

By applying a Cartesian product, the latency to lookup two
tables is reduced by almost half. Embedding tables in deep
recommendation models usually contain short entry vectors
(with between 4 to 64 elements in most cases). Although
the entry vectors of the product are longer, i.e., the sum
of two individual entries, they are still not long enough to
fully take advantage of the spatial locality within DRAM.
To retrieve a vector up to a few hundreds of bytes, a DRAM
spends most of the time initiating the row buffer, while the
following short sequential scan is less significant in terms
of time consumption. As a result, reducing the memory
accesses by half can lead to a speedup of almost 2×.

Though Cartesian products lead to higher storage consump-
tion, this overhead is comparatively small. This may sound
counter-intuitive, however, most deep recommendation mod-
els contain tables of different size scales, so applying Carte-
sian products on small tables is almost for free compared to
some of the largest tables in the model. According to our
observations of real-world deployments, while some tables
only consist of 100 4-dimensional embedding vectors, large
tables can contain up to hundreds of millions of entries with
a vector length of 64 due to the reasons discussed in section
2.2. In this case, a Cartesian product of two small tables
requires only tens of kilobytes (assume 32-bit floating-point
storage): almost negligible compared to a single large table
of tens or hundreds of gigabytes.

Cartesian products can help balancing the workload on off-
chip DRAM (DDR and HBM). For example, suppose there
are 34 off-chip memory channels (32 for HBM and 2 for
DDR), and 40 tables should be allocated on them. In this
case, some banks have to store two embedding tables while
others only hold one. When retrieving one vector from each
table, the lookup performance is bound by the channels hold-
ing two tables, as the lookup latency on them is potentially
2× that of those containing only one table. Using Cartesian
products, the total number of tables can be reduced from 40
to 34. This allows us to balance the workload on each mem-
ory channel resulting in potentially 2× speedup compared
to an unbalanced workload situation.

3.4 Putting Everything Together: A Rule-based
Algorithm for Table Combination and Allocation

Our objective is to minimize embedding lookup latency
given the memory constraints discussed in section 3.2.2, i.e.,
available capacity and channels of each type of memory. To
achieve this, an algorithm is required to explore solutions of
combining tables through Cartesian products and deploying
the result on memory banks.

3.4.1 Brute-force Search

A straightforward way to achieve this objective is to explore
all possibilities in a brute-force manner and choose the best
solution. First, one would list all possibilities of using tables
as Cartesian product candidates. Then, for each one of these
options, all possible combinations of Cartesian products
would be calculated (including joining more than two tables).
Based on the combinations of tables available, the single and
combined tables are allocated to memory banks (solutions
exceeding the memory capacity of a bank can be dropped)
minimizing the latency. For ties in latency, the solution with
the least storage overhead is chosen.

However, applying brute-force search is unrealistic because
of the large exploration space. For example, selecting n of
out N total tables as Cartesian candidates is a combinatorial
problem with a time complexity of O(N !

n!(N−n)!). Then, it
costs O(n!) to explore any Cartesian products combinations
of the candidates. Each outcome, including Cartesian prod-
ucts and original tables, are then allocated to memory banks
at the cost of O(N). Using a parameter to control how many
tables are selected for Cartesian products, the overall time
complexity of the brute-force search is O(

∑N
n=1 N

N !
(N−n)!),

making brute-force searching infeasible as the number of
tables grows up.

3.4.2 Heuristic-rule-based Search

To optimize embedding lookup latency, we propose a heuris-
tic search algorithm that can efficiently search for near-
optima solutions with a low time complexity of O(N2).
Besides, this algorithm can be generalized to any FPGAs,
no matter whether they are equipped with HBM, and no
matter how many memory channels they have. Due to the
memory traits introduced in section 3.2.2, the algorithm sim-
ply regards HBM as additional memory channels: designers
can adjust the memory channel number and bank capacities
in the algorithm according to the available hardware.

Four heuristics are applied in the algorithm to reduce the
search space where the optimal solution is unlikely to ap-
pear3. Consequently, the algorithm can return near-optimas
with low time complexity. The first three rules are designed

3The rules can be expanded, modified, or removed to adpat
different models since these rules are table-size-dependent.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

to explore Cartesian combinations efficiently, while the
fourth rule is for memory allocation.

Heuristic rule 1: large tables are not considered for Cartesian
products. Tables are sorted by size and only the n smallest
tables should be selected for Cartesian products, otherwise
products of large tables can lead to heavier storage overhead.

Heuristic rule 2: Cartesian products for table pairs of two.
Although Cartesian products of the three smallest tables
may only consume tens of megabytes storage (still small
compared to a single large table of several or tens of giga-
bytes), the overall solution could be sub-optimal because
this method consumes too many small tables at once while
they are appropriate candidates to pair with larger tables.

Heuristic rule 3: within the product candidates, the smallest
tables are paired with the largest tables for Cartesian prod-
ucts. This rule avoids terrible solutions where a Cartesian
product is applied between two large tables.

Heuristic rule 4: cache smallest tables on chip. After apply-
ing Cartesian products, we sort all tables by sizes and decide
the number of small tables to store on chip. Two constraints
must be considered during this process. First, the size of
selected tables should not exceed assigned on-chip storage.
Second, if multiple tables are co-located in the same on-chip
bank, the total lookup latency should not exceed off-chip
(DDR or HBM) lookups, otherwise caching tables on-chip
is meaningless.

Algorithm 1 sketches the heuristic-rule-based search for ta-
ble combination and allocation. It starts by iterating over the
number of tables selected as Cartesian product candidates.
Within each iteration, the candidates are quickly combined
by applying the first three heuristic rules (O(N)). All ta-
bles are then allocated to memory banks efficiently by rule
4 (O(N)). The algorithm ends by returning the searched
solution that achieves the lowest embedding lookup latency.
Considering the outer loop iterating over Cartesian candi-
date numbers, the total time complexity of the heuristic
algorithm is as low as O(N2).

4 FPGA IMPLEMENTATION

In this section, we describe the implementation of MicroRec
on an FPGA with an emphasis on its low inference latency.

4.1 Reduce Latency by Deeply Pipelined Dataflow

As shown in Figure 6, we apply a highly pipelined accel-
erator architecture where multiple items are processed by
the accelerator concurrently in different stages. In this de-
sign, the embedding lookup stage and three computation
stages are pipelined. Each DNN computation module is fur-
ther divided into three pipeline stages: feature broadcasting,
computation, and result gathering. BRAMs or registers are

Algorithm 1 Heuristic Search

Input: N : total number of embedding tables; n : number
of tables that are selected for Cartesian products; c: can-
didate tables for Cartesian products; p : all tables after
applying Cartesian products
Output: current best: the best solution found by the
algorithm, including the resulting table number and sizes
as well as which banks they are allocated to.

for n ∈ {1...N} do
c← select tables(n,N) // Heuristic Rule 1
p← Cartesian product(c)

// Heuristic Rule 2 & 3
solution← allocate to banks(p)

// Heuristic Rule 4
if solution is better than current best then
current best← solution

end if
end for
return current best

Figure 6. Highly pipelined and parallelized hardware design.

applied to build pipes (FIFOs) as inter-module connections.

Latency concerns (SLA requirements) are eliminated by
this highly pipelined design for two reasons. First, input
items are processed item by item instead of batch by batch,
thus the time to wait and aggregate a batch of recommenda-
tion queries is removed. Second, the end-to-end inference
latency of a single item is much less than a large batch.

4.2 Embedding Lookup Module

The embedding lookup module gathers and prepares con-
catenated dense features for fully-connected layers. After
receiving lookup indexes, the module concurrently retrieves
embedding vectors from HBM, DDR, and on-chip memory
banks. The concatenated embeddings are then fed to DNN
computation modules through FIFOs.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

4.3 DNN Computation Module

The lower half of Figure 6 presents the computation flow
for a single FC layer, which consists of three pipeline
stages: input feature broadcasting, general matrix-matrix
multiplication (GEMM) computation, and result gather-
ing. Partial GEMM is allocated to each processing unit
(PE) for better routing design and potentially higher perfor-
mance (de Fine Licht et al., 2020). Each PE conducts partial
GEMM through parallelized multiplications followed by an
add tree (Chen et al., 2014).

5 EVALUATION

We evaluate the performance of MicroRec for both end-
to-end recommendation inference and embedding lookups
alone. Given real-world models from Alibaba and the re-
cent recommendation inference benchmark (Gupta et al.,
2020b), MicroRec outperforms the optimized CPU baseline
significantly under all experiment settings.

5.1 Experiment Environment

We employ Xilinx Alveo U280 FPGA (xil), a high-end card
equipped with 8GB of HBM2 (32 channels) and 32 GB
of DDR4 (2 channels). We program the FPGA by Vivado
HLS (viv), which can translate C++ programs to hardware
description language (HDL). The code is then deployed on
Vitis (Kathail, 2020) to generate FPGA bitstream.

The software baseline performance is tested on an AWS
server with Intel Xeon E5-2686 v4 CPU @2.30GHz (16
vCPU, SIMD operations, i.e., AVX2 FMA, supported) and
128 GB DRAM (8 channels). We apply an open-source solu-
tion on deep recommendation systems (Lapis-Hong, 2018),
where TensorFlow Serving (Olston et al., 2017; Abadi et al.,
2016) supports highly optimized model inference.

5.2 Model Specification

We experiment the performance of MicroRec on two classes
of models from different sources. The first class contains
production models deployed in Alibaba, while the second
class comes from the recent recommendation inference
benchmark (Gupta et al., 2020b).

5.2.1 Production Models

We experiment two deep recommendation models from Al-
ibaba in our experiments. Both of them are memory-access
intensive: they contain 47 and 98 embedding tables respec-
tively, much more than current benchmark models (Gupta
et al., 2020b), among which the largest model consists of
only 12 tables. Table 1 shows the parameters of our models.
For example, the smaller recommendation model retrieves
one vector from each of the 47 tables and gathers them into

Table 1. Specification of the production models.

Model Table Num Feat Len Hidden-Layer Size

Small 47 352 (1024,512,256) 1.3 GB
Large 98 876 (1024,512,256) 15.1 GB

a 352-dimensional dense vector to be fed to fully-connected
layers. The models we experiment do not contain bottom
fully-connected layers, which are adopted in some systems
to process dense input features (Gupta et al., 2020b; Ke
et al., 2020).

5.2.2 Facebook Recommendation Benchmark

We also experiment MicroRec on the recent recommenda-
tion inference benchmark by Facebook (Gupta et al., 2020b).
The benchmark published three classes of recommendation
models and their performance breakdown. Although we tar-
get to experiment these models for real-world-deployment,
the benchmark only published a range of parameters for each
type of model. For example, the model class DLRM-RMC2
can contain from 8 to 12 tables, yet no numbers about table
sizes and embedding vector lengths are provided. Without
such information, it is difficult to compare the inference
performance, because some of the parameters are decisive
to the inference workload. For instance, embedding vector
lengths decide the number of operations to be performed in
fully-connected layers.

Therefore, we compare the performance of the embedding
layer: given the narrow range of table numbers Gupta et al.
(2020b) published, we can conduct multiple experiments
and identify a speedup range of MicroRec.

5.3 End-to-End Inference

Table 2 compares the performance of end-to-end recommen-
dation inference on production models between the CPU
baseline and MicroRec (both Cartesian and HBM are ap-
plied). On the CPU side, performance increases as batch
size grows, so we select a large batch size of 2048 as the
baseline (larger batch sizes can break inference latency con-
straints). On the FPGA side, MicroRec infers items without
batching as discussed in Section 4.1. Besides, we evaluate
the FPGA performance of different precision levels, i.e.,
16-bit and 32-bit fixed-point numbers.

MicroRec achieves significant speedup under all experi-
mented settings. In terms of throughput, it is 2.5∼5.4×
better than the baseline under two precision levels and two
model scale. Moreover, the end-to-end latency to infer a
single input item is 16.3∼31.0 microseconds, 3∼4 orders of
magnitude lower than common latency requirements (tens
of milliseconds). Note that the throughput of MicroRec
is not the reciprocal of latency, since multiple items are

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Table 2. MicroRec performance on end-to-end recommendation inference. MicroRec achieves 2.5∼5.4× speedup compared to the
optimized CPU baseline (the speedup is compared to batch latency of FPGA, which consists of both the stable stages in the middle of the
pipeline as well as the time overhead of starting and ending stages). Besides, the end-to-end latency to infer a single input item is as low
as a couple of tens of microseconds: the latency concern of online model serving is eliminated.

CPU
B=1

CPU
B=64

CPU
B=256

CPU
B=512

CPU
B=1024

CPU
B=2048

FPGA
fp16

FPGA
fp32

Smaller Recommendation Model

Latency (ms) 3.34 5.41 8.15 11.15 17.17 28.18 1.63E-2 2.26E-2
Throughput (GOP/s) 0.61 24.04 63.81 93.32 121.16 147.65 619.50 367.72
Throughput (items/s) 299.71 1.18E+4 3.14E+4 4.59E+4 5.96E+4 7.27E+4 3.05E+5 1.81E+5

Speedup: FPGA fp16 204.72× 24.27× 9.56× 6.59× 5.09× 4.19× - -
Speedup: FPGA fp32 147.54× 14.58× 5.69× 3.91× 3.02× 2.48× - -

Larger Recommendation Model

Latency (ms) 7.48 10.23 15.62 21.06 31.72 56.98 2.26E-2 3.10E-2
Throughput (GOP/s) 0.42 19.48 51.03 75.66 100.49 111.89 606.41 379.45
Throughput (items/s) 133.68 6.26E+3 1.64E+3 2.43E+4 3.23E+4 3.59E+4 1.95E+5 1.22E+5

Speedup: FPGA fp16 331.51× 29.56× 11.73× 7.96× 6.02× 5.41× - -
Speedup: FPGA fp32 241.54× 18.67× 7.36× 4.99× 3.77× 3.39× - -

processed by the deep pipeline at the same time.

5.4 Embedding Lookup Performance

We highlight the performance boost of embedding lookups
brought by Cartesian products and HBM in this section on
both the production models and the benchmark models.

5.4.1 Lookups on Production Models

MicroRec outperforms CPU baseline significantly on pro-
duction models as shown in Table 4. Same as Section 5.3,
a large batch size of 2048 is selected for the CPU baseline
to achieve high throughput, while the accelerator always
processes inputs item by item (no concept of batch sizes).
This latency excludes streaming input features from CPU
side memory as mentioned in footnote 2. The result shows
that MicroRec outperforms the baseline by 13.8∼14.7× on
the embedding layer (in addition to DRAM accesses, the
many embedding-related operator calls in TensorFlow also
leads to large consumption in the CPU baseline). Some
detailed result interpretation includes:

Though HBM can achieve satisfying performance on its own,
Cartesian products further speed up the process. For the
smaller model, as shown in Table 3, except those tiny tables
stored on-chip, there are still 39 tables left to be allocated to
DRAM. Considering there are 34 DRAM channels in total
(32 for HBM, 2 for DDR), it takes two DRAM access rounds
to lookup 39 tables. Cartesian products can reduce the table
number to 34, so that only one round of DRAM access
is required. The experiment shows that, with Cartesian
products, the latency of embedding lookup is only 59.17%
of the HBM-only solution (458 ns vs 774 ns). Similarly,

for the larger model, Cartesian products reduce the memory
access rounds from 3 to 2, consumed only 72.12% of the
time (1.63 us vs 2.26 us).

The storage overhead of Cartesian products is fairly low. As
shown in table 3, the products only lead to 3.2% and 1.9%
storage overhead on the two models respectively. This is
because only small tables are selected for Cartesian products
as introduced in section 3.4, so that the products are still
considerably small compared to a single large table.

By Cartesian products and HBM, the memory bottleneck
caused by embedding lookup is eliminated. Since the embed-
ding lookups only cost less than 1 microsecond in MicroRec
(as in Table 4), the bottleneck shifts back to computation, in
which the most expensive stage takes several microseconds.

The accelerator performance is robust even as multiple
rounds of lookups are required. Although the production
models only involves one lookup operations per table, alter-
native DNN architectures may require multiple rounds of
lookups (Gupta et al., 2020b). Figure 7 proves the perfor-
mance robustness of MicroRec in such scenarios by assum-
ing more rounds of embedding retrievals on the two produc-
tion models — the smaller and larger models can tolerate 6
and 4 rounds of lookups without downgrading the end-to-
end inference throughput at all using 16-bit fixed-points, be-
cause the DNN computation and embedding lookup stages
are overlapped. Once more rounds of lookups are assumed,
the performance starts to depend on the total memory ac-
cess latency which is proportional to the rounds of DRAM
accesses.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Table 3. Benefit and overhead of Cartesian products. It only costs marginal extra storage to achieve significant speedup.
Table Num Tables in DRAM DRAM Access Rounds Storage Lookup Latency

Smaller Recommendation Model

Without Cartesian 47 39 2 100% 100%
With Cartesian 42 34 1 103.2% 59.2%

Larger Recommendation Model

Without Cartesian 98 82 3 100% 100%
With Cartesian 84 68 2 101.9% 72.1%

Table 4. MicroRec performance on the embedding layer. Given the same element data width of 32-bits, it outperformed the optimized
CPU baseline by over one order of magnitude. Besides, it only took no more than one microsecond to finish lookups and concatenations
even in embedding-intensive models (47 and 98 tables).

CPU
B=1

CPU
B=64

CPU
B=256

CPU
B=512

CPU
B=1024

CPU
B=2048

FPGA:
HBM

FPGA: HBM +
Cartesian

Smaller Recommendation Model

Latency (ms) 2.59 3.86 4.71 5.96 8.39 12.96 7.74E-4 4.58E-4
Speedup: HBM 3349.97× 77.91× 23.75× 15.04× 10.59× 8.17× - -
Speedup: HBM + Cartesian 5665.07× 131.76× 40.16× 25.44× 17.91× 13.82× - -

Larger Recommendation Model

Latency (ms) 6.25 8.05 10.92 13.67 18.11 31.25 1.38E-3 1.03E-3
Speedup: HBM 4531.23× 91.29× 30.94× 19.36× 12.83× 11.07× - -
Speedup: HBM + Cartesian 6019.37× 121.28× 41.10× 25.72× 17.04× 14.70× - -

Figure 7. End-to-end inference throughput of MicroRec. It allows
multi-rounds lookup without sacrificing performance.

Table 5. MicroRec achieves 18.7∼72.4× embedding lookup
speedup compared to the Facebook’s recommendation baseline.

Performance Embedding Vector Length

4 8 16 32 64

8 Tables (Speedup Upper Bound)

Lookup (ns) 334.5 353.7 411.6 486.3 648.4
Speedup 72.4× 68.4× 58.8× 49.7× 37.3×

12 Tables (Speedup Lower Bound)

Lookup (ns) 648.5 707.4 817.4 972.7 1296.9
Speedup 37.3× 34.2× 29.6× 24.8× 18.7×

5.4.2 Performance on Benchmark Models

We compare the embedding lookup performance of Mi-
croRec to the recent recommendation inference bench-
mark (Gupta et al., 2020b). Although the paper does not
expose all model parameters, we can still identify the em-
bedding lookup performance range on MicroRec by experi-
menting a range of table settings. To be more specific, we
experiment the embedding-dominated model class DLRM-
RMC2, which contains 8∼12 small tables and each table is
looked up 4 times (thus 32 ∼ 48 lookups in total). Several
assumptions are made for the missed information. First, by
“small tables”, we assume each table is within the capacity
of an HBM bank (256MB). Second, we assume common
embedding vector lengths from 4 to 64. Third, no Cartesian
products are applied in our experiments, since the table sizes
are assumed by us.

Table 5 shows the embedding lookup performance on Mi-
croRec: it achieves 18.7∼72.4× speedup compared to the
published baseline performance (2 sockets of Broadwell
CPU @2.4GHz; 14 cores per socket; AVX-2 supported; 256
GB 2400MHz DDR4 DRAM; batch size=256). This perfor-
mance range is identified by experimenting table numbers
from 8 to 12 and vector lengths from 4 to 64. The highest
speedup occurred when there are only 8 embedding tables
(32 lookups) with a short vector size of 4, for which only

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

one round on HBM lookup is required. The lowest speedup
happens when there are 12 tables with a long vector size of
64, where 2 rounds of HBM accesses are necessary.

6 RELATED WORK

Deep learning for personalized recommendations. While
regular DNNs take dense features as input, He et al. (2017)
proposed to encode user information by embedding tables in
recommendation models. The dense features gathered from
embedding vectors are then processed by a series of matrix-
factorization and FC layers. Covington et al. (2016) applied
similar neural network structures for Youtube video recom-
mendation. Cheng et al. (2016) discussed the pros-and-cons
of linear models and deep models, and proposed to serve
Google Play recommendations with joint wide-and-deep
models. Zhao et al. (2019) improved the wide-and-deep
model by taking multiple objectives into account beyond
click-through rates (CTR), e.g., comments, likes, and ratings.
Facebook introduced additional fully-connected layers to
process dense input features: the dense features are fed into
bottom FC layers, and the output features are concatenated
with embedding vectors (Gupta et al., 2020b). Alibaba re-
moved dense input features in their deep models and applied
attention mechanism on the top of embedding tables (Zhou
et al., 2018). Zhou et al. (2019) further extended this work
by introducing sequential neural network.

Hardware solutions for recommendations. According to
Facebook, recommendation workloads can consume up to
79% of total AI inference cycles in data centers (Gupta
et al., 2020b). However, little research has been focused
on serving personalized recommendations efficiently. In
order to provide enough background knowledge to the re-
search community and tackle this important problem, Gupta
et al. (2020b) analyzed the recommendation workload com-
prehensively, open-sourced several models used by Face-
book, and set up a performance benchmark. Kwon et al.
(2019) is the first hardware solution for high performance
recommendation inference. They reduced the memory bot-
tleneck by introducing DIMM-level parallelism in DRAM
and supporting tensor operations, e.g., gather and reduction,
within the DRAM. Ke et al. (2020) extended the idea of
near-memory-processing and added memory-side-caching
for frequently-accessed entries. Gupta et al. (2020a) took
into account the characteristics of query sizes and arrival
patterns, and developed an efficient scheduling algorithm
to maximize throughput under latency constraints by using
both CPUs and GPUs. Hwang et al. (2020) implemented
an FPGA accelerator (without HBM) for deep recommenda-
tion inference, and the speedup was significant for models
with few embedding tables. Compared to previous work,
MicroRec is the first system that introduces data structure
solution, i.e., Cartesian products, to reduce the number of

DRAM accesses. It is also the first work resorting to HBM
so as to parallelize embedding lookups.

Efficient Model Serving. Aside from recommendations, a
range of research has been focused on neural network serv-
ing. Due to the heavy workload of DNN inference, many
works resort to specialized hardware (Jouppi et al., 2017;
Mei et al., 2019; Chung et al., 2018; Hsieh et al., 2018;
Zhang & Li, 2017; Chen et al., 2016; Mao et al., 2019;
Sharify et al., 2019; Shao et al., 2019; Feng et al., 2019;
Owaida et al., 2017; Gao et al., 2017; Chen et al., 2014;
Hua et al., 2019; Farcas et al., 2020). Besides, designing
hardware-efficient neural networks is essential for infer-
ence performance (Han et al., 2017; Stamoulis et al., 2019;
Teja Mullapudi et al., 2018; Zhang et al., 2019; Howard
et al., 2017; Elthakeb et al., 2018; Ghasemzadeh et al., 2018;
Maschi et al., 2020). Furthermore, one can optimize serv-
ing performance on general-purpose hardware (CPU and
GPU) by system-level optimization (Olston et al., 2017;
Narayanan et al., 2018; Chen et al., 2018b; Choi & Rhu,
2020; Wu et al., 2019; Crankshaw et al., 2018).

Efficient Model Training. Due to the increasing numbers and
sizes of neural networks, high-performance model training
becomes essential (Mattson et al., 2019). Training usually
resorts to accelerators such as GPUs (Shoeybi et al., 2019;
Cho et al., 2019b; Dong et al., 2020; Cui et al., 2016) and
FPGAs (Zhang et al., 2017; Cho et al., 2019a; Kara et al.,
2017; He et al., 2020; 2018; Zhao et al., 2016; Gürel et al.,
2020). Besides, many works accelerate training by better
system and algorithm designs (Jayarajan et al., 2019; Das
et al., 2018; Peng et al., 2019; Narayanan et al., 2019; Jia
et al., 2018; Wang et al., 2019; Moritz et al., 2018; Kurth
et al., 2017; Rajbhandari et al., 2017; Li et al., 2020; 2014;
Chen et al., 2018a; Abuzaid et al., 2016).

7 CONCLUSION

We design and implement MicroRec, a high-performance
deep recommendation inference engine. On the data struc-
ture side, MicroRec applies Cartesian products to reduce
sparse memory accesses. On the hardware side, HBM is
adopted to scale up embedding lookup concurrency, and the
deeply pipelined architecture design on FPGA enables low
inference latency. By the three strategies we propose, the
memory bottleneck caused by embedding lookups is almost
eliminated, and the latency requirements of recommenda-
tion inference are easily met.

ACKNOWLEDGEMENTS

Part of the work of Wenqi Jiang and Zhenhao He has been
funded by the Alibaba Group. We would like to thank Xilinx
for their generous donation of the XACC FPGA cluster at
ETH Zurich on which the experiments were conducted.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

REFERENCES

Vivado high-level synthesis. https://www.xilinx.
com/products/design-tools/vivado/
integration/esl-design.html.

Alveo u280 data center accelerator card. https://www.
xilinx.com/products/boards-and-kits/
alveo/u280.html.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Abuzaid, F., Bradley, J. K., Liang, F. T., Feng, A., Yang,
L., Zaharia, M., and Talwalkar, A. S. Yggdrasil: An
optimized system for training deep decision trees at scale.
In Advances in Neural Information Processing Systems,
pp. 3817–3825, 2016.

Chen, L., Wang, H., Zhao, J., Papailiopoulos, D., and
Koutris, P. The effect of network width on the perfor-
mance of large-batch training. In Advances in Neural
Information Processing Systems, pp. 9302–9309, 2018a.

Chen, T., Moreau, T., Jiang, Z., Shen, H., Yan, E. Q., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., and Krishnamurthy,
A. Tvm: end-to-end optimization stack for deep learning.
arXiv preprint arXiv:1802.04799, 11:20, 2018b.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L.,
Chen, T., Xu, Z., Sun, N., et al. Dadiannao: A machine-
learning supercomputer. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 609–
622. IEEE, 2014.

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. Eyeriss:
An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE journal of solid-
state circuits, 52(1):127–138, 2016.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra,
T., Aradhye, H., Anderson, G., Corrado, G., Chai, W.,
Ispir, M., et al. Wide & deep learning for recommender
systems. In Proceedings of the 1st workshop on deep
learning for recommender systems, pp. 7–10, 2016.

Cho, H., Oh, P., Park, J., Jung, W., and Lee, J. Fa3c: Fpga-
accelerated deep reinforcement learning. In Proceed-
ings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 499–513, 2019a.

Cho, M., Finkler, U., and Kung, D. Blueconnect: Novel
hierarchical all-reduce on multi-tired network for deep

learning. In Proceedings of the Conference on Systems
and Machine Learning (SysML), 2019b.

Choi, Y. and Rhu, M. Prema: A predictive multi-task
scheduling algorithm for preemptible neural processing
units. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 220–
233. IEEE, 2020.

Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung,
R., Nel, P., and Malhotra, S. Notes from the ai frontier:
Insights from hundreds of use cases. McKinsey Global
Institute, 2018.

Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M.,
Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay,
S., Haselman, M., et al. Serving dnns in real time at
datacenter scale with project brainwave. IEEE Micro, 38
(2):8–20, 2018.

Covington, P., Adams, J., and Sargin, E. Deep neural net-
works for youtube recommendations. In Proceedings of
the 10th ACM conference on recommender systems, pp.
191–198, 2016.

Crankshaw, D., Sela, G.-E., Zumar, C., Mo, X., Gonzalez,
J. E., Stoica, I., and Tumanov, A. Inferline: Ml infer-
ence pipeline composition framework. arXiv preprint
arXiv:1812.01776, 2018.

Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and
Xing, E. P. Geeps: Scalable deep learning on distributed
gpus with a gpu-specialized parameter server. In Proceed-
ings of the Eleventh European Conference on Computer
Systems, pp. 1–16, 2016.

Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D.,
Avancha, S., Banerjee, K., Sridharan, S., Vaidyanathan,
K., Kaul, B., Georganas, E., et al. Mixed precision train-
ing of convolutional neural networks using integer opera-
tions. arXiv preprint arXiv:1802.00930, 2018.

de Fine Licht, J., Kwasniewski, G., and Hoefler, T. Flex-
ible communication avoiding matrix multiplication on
fpga with high-level synthesis. In The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pp. 244–254, 2020.

Dong, J., Cao, Z., Zhang, T., Ye, J., Wang, S., Feng, F., Zhao,
L., Liu, X., Song, L., Peng, L., et al. Eflops: Algorithm
and system co-design for a high performance distributed
training platform. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pp. 610–622. IEEE, 2020.

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Elthakeb, A. T., Pilligundla, P., Mireshghallah, F., Yazdan-
bakhsh, A., Gao, S., and Esmaeilzadeh, H. Releq: an auto-
matic reinforcement learning approach for deep quantiza-
tion of neural networks. arXiv preprint arXiv:1811.01704,
2018.

Farcas, A.-J., Li, G., Bhardwaj, K., and Marculescu, R. A
hardware prototype targeting distributed deep learning
for on-device inference. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 398–399, 2020.

Feng, Y., Whatmough, P., and Zhu, Y. Asv: accelerated
stereo vision system. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pp. 643–656, 2019.

Gao, M., Pu, J., Yang, X., Horowitz, M., and Kozyrakis,
C. Tetris: Scalable and efficient neural network accel-
eration with 3d memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pp. 751–764, 2017.

Ghasemzadeh, M., Samragh, M., and Koushanfar, F. Rebnet:
Residual binarized neural network. In 2018 IEEE 26th
Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 57–64. IEEE,
2018.

Gomez-Uribe, C. A. and Hunt, N. The netflix recom-
mender system: Algorithms, business value, and inno-
vation. ACM Transactions on Management Information
Systems (TMIS), 6(4):1–19, 2015.

Gupta, U., Hsia, S., Saraph, V., Wang, X., Reagen, B.,
Wei, G.-Y., Lee, H.-H. S., Brooks, D., and Wu, C.-J.
Deeprecsys: A system for optimizing end-to-end at-scale
neural recommendation inference. pp. 790–803, 2020a.

Gupta, U., Wu, C.-J., Wang, X., Naumov, M., Reagen, B.,
Brooks, D., Cottel, B., Hazelwood, K., Hempstead, M.,
Jia, B., et al. The architectural implications of facebook’s
dnn-based personalized recommendation. In 2020 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), pp. 488–501. IEEE, 2020b.

Gürel, N. M., Kara, K., Stojanov, A., Smith, T., Lemmin,
T., Alistarh, D., Püschel, M., and Zhang, C. Compressive
sensing using iterative hard thresholding with low preci-
sion data representation: Theory and applications. IEEE
Transactions on Signal Processing, 68:4268–4282, 2020.

Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D.,
Luo, H., Yao, S., Wang, Y., Yan, H., and Dally, W. J. Ese:
Efficient speech recognition engine with sparse lstm on

fpga. In Proceedings of the 2017 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays,
pp. 75–84, 2017.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua,
T.-S. Neural collaborative filtering. In Proceedings of
the 26th international conference on world wide web, pp.
173–182, 2017.

He, Z., Sidler, D., István, Z., and Alonso, G. A flexible
k-means operator for hybrid databases. In 2018 28th
International Conference on Field Programmable Logic
and Applications (FPL), pp. 368–3683. IEEE, 2018.

He, Z., Wang, Z., and Alonso, G. Bis-km: Enabling any-
precision k-means on fpgas. In The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate
Arrays, pp. 233–243, 2020.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Hsieh, K., Ananthanarayanan, G., Bodik, P., Venkataraman,
S., Bahl, P., Philipose, M., Gibbons, P. B., and Mutlu, O.
Focus: Querying large video datasets with low latency
and low cost. In 13th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 18),
pp. 269–286, 2018.

Hua, W., Zhou, Y., De Sa, C., Zhang, Z., and Suh, G. E.
Boosting the performance of cnn accelerators with dy-
namic fine-grained channel gating. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 139–150, 2019.

Hwang, R., Kim, T., Kwon, Y., and Rhu, M. Centaur: A
chiplet-based, hybrid sparse-dense accelerator for person-
alized recommendations. pp. 790–803, 2020.

Jayarajan, A., Wei, J., Gibson, G., Fedorova, A., and Pekhi-
menko, G. Priority-based parameter propagation for dis-
tributed dnn training. arXiv preprint arXiv:1905.03960,
2019.

Jia, Z., Zaharia, M., and Aiken, A. Beyond data and model
parallelism for deep neural networks. arXiv preprint
arXiv:1807.05358, 2018.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pp. 1–12,
2017.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Jun, H., Cho, J., Lee, K., Son, H.-Y., Kim, K., Jin, H., and
Kim, K. Hbm (high bandwidth memory) dram technology
and architecture. In 2017 IEEE International Memory
Workshop (IMW), pp. 1–4. IEEE, 2017.

Kara, K., Alistarh, D., Alonso, G., Mutlu, O., and Zhang,
C. Fpga-accelerated dense linear machine learning: A
precision-convergence trade-off. In 2017 IEEE 25th An-
nual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pp. 160–167.
IEEE, 2017.

Kathail, V. Xilinx vitis unified software platform. In The
2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 173–174, 2020.

Ke, L., Gupta, U., Cho, B. Y., Brooks, D., Chandra, V.,
Diril, U., Firoozshahian, A., Hazelwood, K., Jia, B.,
Lee, H.-H. S., et al. Recnmp: Accelerating personal-
ized recommendation with near-memory processing. In
2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 790–803. IEEE,
2020.

Kurth, T., Zhang, J., Satish, N., Racah, E., Mitliagkas, I.,
Patwary, M. M. A., Malas, T., Sundaram, N., Bhimji, W.,
Smorkalov, M., et al. Deep learning at 15pf: supervised
and semi-supervised classification for scientific data. In
Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–11, 2017.

Kwon, Y., Lee, Y., and Rhu, M. Tensordimm: A practical
near-memory processing architecture for embeddings and
tensor operations in deep learning. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 740–753, 2019.

Lapis-Hong. Lapis-hong/wide deep. https://github.
com/Lapis-Hong/wide_deep, Oct 2018.

Li, C., Chen, T., You, H., Wang, Z., and Lin, Y. Halo:
Hardware-aware learning to optimize. In The 16th Eu-
ropean Conference on Computer Vision (ECCV 2020),
2020.

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed,
A., Josifovski, V., Long, J., Shekita, E. J., and Su, B.-Y.
Scaling distributed machine learning with the parameter
server. In 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp.
583–598, 2014.

Mao, J., Yang, Q., Li, A., Li, H., and Chen, Y. Mobieye: An
efficient cloud-based video detection system for real-time
mobile applications. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

Maschi, F., Owaida, M., Alonso, G., Casalino, M., and
Hock-Koon, A. Making search engines faster by lower-
ing the cost of querying business rules through fpgas. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 2255–2270,
2020.

Mattson, P., Cheng, C., Coleman, C., Diamos, G., Micike-
vicius, P., Patterson, D., Tang, H., Wei, G.-Y., Bailis,
P., Bittorf, V., et al. Mlperf training benchmark. arXiv
preprint arXiv:1910.01500, 2019.

Mei, L., Dandekar, M., Rodopoulos, D., Constantin, J.,
Debacker, P., Lauwereins, R., and Verhelst, M. Sub-
word parallel precision-scalable mac engines for efficient
embedded dnn inference. In 2019 IEEE International
Conference on Artificial Intelligence Circuits and Systems
(AICAS), pp. 6–10. IEEE, 2019.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw,
R., Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan,
M. I., et al. Ray: A distributed framework for emerging
{AI} applications. In 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI}
18), pp. 561–577, 2018.

Narayanan, D., Santhanam, K., Phanishayee, A., and Za-
haria, M. Accelerating deep learning workloads through
efficient multi-model execution. In NeurIPS Workshop
on Systems for Machine Learning, pp. 20, 2018.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Naumov, M., Mudigere, D., Shi, H.-J. M., Huang, J., Sun-
daraman, N., Park, J., Wang, X., Gupta, U., Wu, C.-J.,
Azzolini, A. G., et al. Deep learning recommendation
model for personalization and recommendation systems.
arXiv preprint arXiv:1906.00091, 2019.

Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li,
F., Rajashekhar, V., Ramesh, S., and Soyke, J. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv
preprint arXiv:1712.06139, 2017.

Owaida, M., Zhang, H., Zhang, C., and Alonso, G. Scalable
inference of decision tree ensembles: Flexible design
for cpu-fpga platforms. In 2017 27th International Con-
ference on Field Programmable Logic and Applications
(FPL), pp. 1–8. IEEE, 2017.

O’Connor, M. Highlights of the high-bandwidth memory
(hbm) standard. In Memory Forum Workshop, 2014.

https://github.com/Lapis-Hong/wide_deep
https://github.com/Lapis-Hong/wide_deep

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

Park, J., Naumov, M., Basu, P., Deng, S., Kalaiah, A., Khu-
dia, D., Law, J., Malani, P., Malevich, A., Nadathur, S.,
et al. Deep learning inference in facebook data cen-
ters: Characterization, performance optimizations and
hardware implications. arXiv preprint arXiv:1811.09886,
2018.

Peng, Y., Zhu, Y., Chen, Y., Bao, Y., Yi, B., Lan, C., Wu, C.,
and Guo, C. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pp. 16–29, 2019.

Rajbhandari, S., He, Y., Ruwase, O., Carbin, M., and
Chilimbi, T. Optimizing cnns on multicores for scalabil-
ity, performance and goodput. ACM SIGARCH Computer
Architecture News, 45(1):267–280, 2017.

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fo-
jtik, M., Jiang, N., Keller, B., Klinefelter, A., Pinckney,
N., Raina, P., et al. Simba: Scaling deep-learning in-
ference with multi-chip-module-based architecture. In
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 14–27, 2019.

Sharify, S., Lascorz, A. D., Mahmoud, M., Nikolic, M., Siu,
K., Stuart, D. M., Poulos, Z., and Moshovos, A. Laconic
deep learning inference acceleration. In 2019 ACM/IEEE
46th Annual International Symposium on Computer Ar-
chitecture (ISCA), pp. 304–317. IEEE, 2019.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-lm: Training multi-billion
parameter language models using gpu model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D.,
Priyantha, B., Liu, J., and Marculescu, D. Single-path
nas: Designing hardware-efficient convnets in less than 4
hours. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pp. 481–497.
Springer, 2019.

Teja Mullapudi, R., Mark, W. R., Shazeer, N., and Fata-
halian, K. Hydranets: Specialized dynamic architectures
for efficient inference. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
8080–8089, 2018.

Underwood, C. Use cases of recommendation systems in
business-current applications and methods, 2019.

Wang, Z., Kara, K., Zhang, H., Alonso, G., Mutlu, O., and
Zhang, C. Accelerating generalized linear models with
mlweaving: A one-size-fits-all system for any-precision
learning. Proceedings of the VLDB Endowment, 12(7):
807–821, 2019.

Wang, Z., Huang, H., Zhang, J., and Alonso, G. Bench-
marking high bandwidth memory on fpgas. 2020.

Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S.,
Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B.,
et al. Machine learning at facebook: Understanding infer-
ence at the edge. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pp. 331–344. IEEE, 2019.

Xie, X., Lian, J., Liu, Z., Wang, X., Wu, F., Wang, H., and
Chen, Z. Personalized recommendation systems: Five
hot research topics you must know. Microsoft Research
Lab-Asia, 2018.

Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., and Zhang,
C. Zipml: Training linear models with end-to-end low
precision, and a little bit of deep learning. In International
Conference on Machine Learning, pp. 4035–4043, 2017.

Zhang, J. and Li, J. Improving the performance of opencl-
based fpga accelerator for convolutional neural network.
In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 25–
34, 2017.

Zhang, X., Lu, H., Hao, C., Li, J., Cheng, B., Li, Y.,
Rupnow, K., Xiong, J., Huang, T., Shi, H., et al.
Skynet: a hardware-efficient method for object detec-
tion and tracking on embedded systems. arXiv preprint
arXiv:1909.09709, 2019.

Zhao, W., Fu, H., Luk, W., Yu, T., Wang, S., Feng, B., Ma,
Y., and Yang, G. F-cnn: An fpga-based framework for
training convolutional neural networks. In 2016 IEEE
27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 107–
114. IEEE, 2016.

Zhao, Z., Hong, L., Wei, L., Chen, J., Nath, A., Andrews,
S., Kumthekar, A., Sathiamoorthy, M., Yi, X., and Chi,
E. Recommending what video to watch next: a multi-
task ranking system. In Proceedings of the 13th ACM
Conference on Recommender Systems, pp. 43–51, 2019.

Zhou, G., Zhu, X., Song, C., Fan, Y., Zhu, H., Ma, X., Yan,
Y., Jin, J., Li, H., and Gai, K. Deep interest network for
click-through rate prediction. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1059–1068, 2018.

Zhou, G., Mou, N., Fan, Y., Pi, Q., Bian, W., Zhou, C.,
Zhu, X., and Gai, K. Deep interest evolution network
for click-through rate prediction. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 5941–5948, 2019.

MicroRec: Efficient Recommendation Inference by Hardware and Data Structure Solutions

APPENDIX: MEMORY CONTROLLER AND AXI INTERFACE

To set up the communication between FPGA and DRAM (including HBM and DDR), we choose a narrow AXI interface
data width of 32-bit. Although the full data width (512-bit) can reduce the number of clock cycles required for vector
reading, it has two disadvantages. First, it consumes too much hardware resources. To support efficient communication to
DRAM without much stalls, we apply BRAMs as long FIFOs. Since there are 34 DRAM channels in total (32 for HBM
and 2 for DDR), these FIFOs will consume over half of total BRAMs slices on Alveo U280 FPGA given 512-bit data
width. Such BRAM consumption is too expensive to afford because DNN computation modules also require substantial
BRAM resources. Second, higher resource utilization can lead to downgraded clock frequency, resulting in lower inference
performance. According to the experiments in section 5.3 and 5.4, the embedding lookup process in our design is fast
enough to be covered by DNN computation (remember we applied a pipelined design). As a result, lower clock frequency
will lead to decreased computation performance thus higher inference latency.

APPENDIX: FPGA RESOURCE UTILIZATION

Table 6 lists the resource utilization and clock frequency of our deep recommendation inference accelerator. We implement
the design on Xilinx Alveo U280, a high-end FPGA card consisting of three die areas. The resource consumptions are
composed of all GEMM PEs, their interconnection, and the embedding lookup module. According to the estimation of
Vivado HLS (the consumption can be further optimized by the Vivado backend), each PE for 32-bits fixed-point GEMM
consumes 7 BRAM slices and 18 DSPs while the 16-bit one consumes 4 BRAM slices and 14 DSPs. The number of PEs for
three layers are 128, 128, and 32 for both models and precision-levels. Because of the high resource utilization rate (more
than 80% for some resources), cross-die routing is necessary, and the long-distance communication must be tolerated by low
clock frequency (120∼140MHz).

Table 6. FPGA frequency & resource utilization (Xilinx Alveo U280)

Small Model Large Model
Precision fixed-point 16 fixed-point 32 fixed-point 16 fixed-point 32

Freq (MHz) 120 140 120 135
Utilization (Slices)

BRAM 18Kbit 1,566 1,657 1,566 1721
DSP48E 4,625 5,193 4,625 5,193
Flip-Flop 683,641 764,067 691,042 777,527

LUT 485,323 568,864 514,517 584,220
URAM 288Kbit 642 770 642 770

Utilization (%)
BRAM 18Kbit 78 82 78 85

DSP48E 51 57 51 57
Flip-Flop 26 29 27 30

LUT 37 44 40 45
URAM 288Kbit 66 66 80 80

APPENDIX: COST ESTIMATION

We compare the price between CPU-based and FPGA-based inference engine on AWS. The CPU server we rent costs $1.82
per hour while renting an FPGA server only costs $1.65 (AWS provides U250, a similar model to what we use). Considering
the 4∼5x speedup using 32-bit fixed-points, deploying FPGAs will be beneficial in the long-term.

